CONFORMANCE TEST SUITE USER
MANUAL

for Testing Interface and Application Code against the FACE™ Technical Standard 3.0
CTS Version 3.0.2

File Run Help i

ﬁgr Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS55_Genera...

@ Run Conformance Test
thomejdi/ Des ktop/FACEConformanceT...

":{1 Create a Project Configuration
E Create a Toolchain Configuration

e Preferences

fa Documentation

"NAVAIR Public Release 2021-434" 1
Distribution Statement A -"Approved for public release; distribution is unlimited"

Copyright (c) Vanderbilt University, 2021

(adapted from "original work"; Copyright (c) 2018-2019 Georgia Tech Applied Research Corporation;
Copyright (c) 2018 Vanderbilt University)

ALL RIGHTS RESERVED, UNLESS OTHERWISE STATED

This software, authored by Vanderbilt University under a contract awarded to and managed by
Precise Systems, was funded by the U.S. Government under Contract No. N00178-14-D-7875 and the
U.S. Government has unlimited rights in this software. An "unlimited rights" license means that the
U.S. Government can use, modify, reproduce, release or disclose computer software in whole or in
part, in any manner, and for any purpose whatsoever, and to have or authorize others to do so.

This work was originally developed under Contract No. FA8075-14-D-0018 awarded to the Georgia
Tech Applied Research Corporation (GTARC) by the U.S. Government for the Georgia Tech Research
Institute (GTRI) and Institute for Software Integrated Systems (ISIS), Vanderbilt University.

GTARC and Vanderbilt University disclaim all warranties with regard to this software, including all
implied warranties of merchantability and fitness for a particular use or purpose, validity of any
intellectual property rights or claims, or noninfringement of any third party intellectual property
rights. In no event shall GTARC or Vanderbilt University be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of this software.

Vanderbilt University acknowledges The Open Group for permission to include text/figures derived
from its copyrighted Future Airborne Capability Environment (FACE™) Reference Architecture.
FACE is a trademark of The Open Group in the United States and other countries.

NAVAIR Public Release 2021-434
Distribution Statement A -"Approved for public release; distribution is unlimited"

HANDLING AND DESTRUCTION NOTICE: Comply with distribution statement and destroy by any
method that will prevent disclosure of the contents or reconstruction of the document.

Future Airborne Capability Environment (FACE™) Reference Architecture, 2012 The Open Group.
FACE is a trademark of The Open Group in the United States and other countries.

2 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Table of Contents

1. Introduction
1.1. Context
1.2. Tools Contained in the Test Suite
1.2.1. Conformance Testing Workflow
2. Installation
2.1. Installation on Linux (CentOS 7/RHEL 7)
2.1.1. User Prerequisites
2.1.2. System Requirements
2.1.3. Language-Specific Prerequisites
GCC/G++4.8.5
Python 2.7
Protocol Buffers 2.6
Java 8 JDK
Ant 1.9.x
Qt 5.2.1 (for Java only)
2.1.4. Installation of CTS
Environment Variables
2.1.5. Running CTS
Launching CTS
2.2. Installation Variance for CentOS 8/RHEL 8
2.3. Installation on Windows (Windows 10)
2.3.1. User Prerequisites
2.3.2. System Requirements
2.3.3. Language-specific Prerequisites
2.3.4. Detailed Instructions for Installing Prerequisites
Python 2.7
Java JDK 8
MSYS2 (for C/C++/Ada samples only)
Ant 1.9.x
Qt 5.2.1 (for Java only)
Enable Long Paths in Windows 10
2.3.5. Installation of CTS
Installation Variance for Windows Cygwin/GCC Toolchains
2.3.6. Running CTS
3. Theory of Operation
3.1. Introduction to Methodology
3.2. Target Linker Method
3.3. Host Linker Method

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

~N O O

10
10
10
10
10
11
11
11
12
14
14
15
15
16
17
17
18
18
18
19
19
19
20
24
27
28
28
29
29
29
31
31
32
33

3.4. Additional Methodology Information
3.4.1. 0SS Testing Methodology
3.4.2. Java Testing Methodology
4. Toolchain Configuration File
4.1. Introduction
4.2. Toolchain Files List
4.3. Building a Toolchain Configuration File
4.3.1. General Tab
4.3.2. File Extensions Tab
4.3.3. Tools Tab
4.3.4. Compiler Specific Tab
Compiler Specific Functionality
Configuration
4.3.5. Notes Tab
5. Project Configuration File
5.1. Introduction
5.2. Project Files List
5.3. Building a Project Configuration File
5.3.1. General Tab
5.3.2. Data Model Tab
5.3.3. Gold Standard Libraries Tab
5.3.4. Objects/Libraries Tab
5.3.5. Notes Tab
5.3.6. Project Info Tab
6. Sample Project and Toolchain Configuration Files
6.1. Build Flags
6.2. Linux Generation
6.3. Windows Generation
6.3.1. Regarding Failing Test Results and Shared Data Model
7. Testing a UoC
7.1. Overview
7.2. Testing a Portable Components Segment (PCS) UoC
7.2.1. What the User Must Provide
7.2.2. Test Procedures
Providing Project Context
Generating the Gold Standard Libraries
Factory Functions
Validating and Testing a Project
7.3. Testing a Platform Specific Services Segment (PSSS) UoC
7.3.1. What the User Must Provide
7.3.2. Test Procedures

4 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

33
33
34
35
35
35
36
36
37
38
40
40
41
43
45
45
45
46
46
47
48
49
35
35
57
57
58
58
60
61
61
61
61
62
62
68
69
70
70
71
71

Providing Project Context 71

Generating the Gold Standard Libraries 78
Factory Functions 79
Validating and Testing a Project 80
7.4. Testing a Transport Services Segment (TSS) UoC 80
7.4.1. What the User Must Provide 81
7.4.2. Test Procedures 81
Providing Project Context 81
Generating the Gold Standard Libraries 87
Factory Functions 88
Validating and Testing a Project 89
7.5. Testing an I/O Services Segment (I0S) UoC 89
7.5.1. What the User Must Provide 90
7.5.2. Test Procedures 90
Providing Project Context 90
Generating the Gold Standard Libraries 97
Factory Functions 98
Validating and Testing a Project 99
7.6. Testing an Operating System Segment (OSS) UoC 99
7.6.1. What the User Must Provide 100
7.6.2. Test Procedures 100
Providing Project Context 100
Generating Gold Standard Libraries 103
Factory Functions 104
Validating and Testing a Project 106
7.7. Testing a Data Model 106
7.7.1. What the User Must Provide 106
7.7.2. Test Procedures 106
7.8. Considerations for Testing an Ada Segment 109
7.9. Considerations for Testing a Java Segment 109
7.10. Viewing Test Suite Results 110
Appendix A: References 113
Appendix B: Using the CTS Via Command Line Interface (CLI): 114
Appendix C: Glossary 115
Appendix D: Constraints 116
Appendix E: Known Issues 117
Appendix F: Acknowledgments 118
"NAVAIR Public Release 2021-434" 5

Distribution Statement A -"Approved for public release; distribution is unlimited"

1. Introduction

This Guide is intended to show the user how to install and effectively use the CTS. The Conformance
Test Suite (CTS) tests Units of Conformance (UoCs) and data models that meet a subset of the
requirements in the FACE™ Technical Standard, Edition 3.0. All requirements the CTS is required to
test are defined in the Conformance Verification Matrix (CVM), provided by the FACE Consortium.
All types of UoCs may be tested with the CTS, including:

1. Portable Components Segment (PCS) UoCs

2. Platform Specific Services Segment (PSSS) UoCs
3. Transport Services Segment (TSS) UoCs

4. T/O Services Segment (I0SS) UoCs
5

. Operating System Segment (OSS) UoCs

Testing procedures for each segment are listed in the sections contained in this user manual.

1.1. Context

There are two versions of the CTS: CTS 2.X and CTS 3.X (where X is a number that defines the
version of the standard and version of the CTS released. For example, CTS 3.1.0 represents
supporting the 3.1 edition of the Technical Standard and is the initial release of the CTS). Version
2.X is developed by Vanderbilt University. Version 3.X was originally developed by GTRI and
currently maintained by Vanderbilt University. Use of developed code for the FACE Technical
Standard, Edition 2.X cannot currently be tested with CTS 3.X, and developed code for the FACE
Technical Standard, Edition 3.X cannot be tested with 2.X. This document refers to version 3.X of the
CTS and will henceforth be referred to as “the CTS” unless otherwise delineated.

1.2. Tools Contained in the Test Suite

The CTS’s graphical user interface (GUI) allows for a user-friendly approach for FACE conformance
testing and it is the method in which users of the CTS are expected to use the tool. Additionally, the
CTS is comprised of multiple, separate tools that work together to test software components against
the FACE Technical Standard and produce a conformance test result.

Although the user is expected to interact with CTS through the GUIL it is beneficial to understand
from a high-level the specialized tools the CTS uses and how they work together to test for
conformance. There are four tools contained in the CTS:

1. UsmIDLGenerator/DIG (Data Model to IDL. Generator)

o The UsmIDLGenerator/DIG generates the IDL (Interface Definition Language) for the
platform data types and views specified by a Unit of Portability (UoP) in a USM (UoP
Supplied Model). Used at CTS runtime, the generated IDL is compiled into source code for
the programming language that the candidate UoC is written.

2. Ideal
o Ideal is a translator that converts FACE interfaces, defined in IDL, using the programming

6 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

language mappings described in the FACE Technical Standard for Ada, Java, C99, and C++03.
Ideal is used by the CTS to generate language specific code from the output of the

UsmIDLGenerator/DIG.
3. DMVT (Data Model Validation Tool)

o The DMVT takes the Shared Data Model (SDM) and a UoC’s USM as inputs to test the USM for
adherence to the data architecture specification in the FACE Technical Standard. For UoC’s
that require a USM for testing, the CTS invokes the DMVT first to ensure the USM is meets
the Standard before proceeding with testing. The SDM is available for download on The
Open Group’s website at https://www.opengroup.org/face/docsandtools.

4. FACE Conformance Application

> The FACE Conformance Application refers to the software pieces of the CTS for the front-end
GUIL, backend processes to test for FACE conformance and the generation of the FACE
conformance report after a UoC is tested.

The overall testing workflow and how the tools are used is summarized in the following section.

1.2.1. Conformance Testing Workflow

The figure below provides details of the high-level workflow on how each of the CTS tools interact
with one another. The figure also details an example for intended UoC development and UoC

conformance testing process.

Specific instructions on how to test a specific UoC is contained within this user manual in the
Project Configuration Files, Toolchain Configuration Files and Testing a UoC sections.

Ideal

5. Generates the factory function
header file based on Typed Interfaces
and ‘used” interfaces that the user
‘checked” in the project configuration

11. USM and SDM location gathered from .pcfg file. FACE Interfaces for used and
provided interfaces are created.

i Source files for 0SS GSL files are

compiled and archived into libraries.
These files are put in the place where
the user told the GSLs were ta be
generated.

¥
DMVT/DAVT

12. Data model validation result < /)

1. User configures the .pefg/.tefg file
e

2. User sends command to generate GSLs

4.IDLis generated by the DIG. Data structures and typed interfaces are

generated based on the parsed USM and .pcfg user selected options.

GSL
Generation

6. User gathers the generated headers and notes the required functions

FACE Conformance .

Application

13a. Test source files for Injectables are generated

13b. CTS Factory Functions are compiled using user-provided source

file

13c. Test files (generated and CTS-provided) are compiled and linked
w/ UoC object, CTS Factory Functions, and GSL libraries into a series

of executables (that never run)

13d. Link test is performed with limited GSL libraries to test for inter-
UoC restricted calls

8. User provides concrete factory functions in the .pefg

10. User sends command to test the UoC for conformance

o

» UsmIDLGen/DIG

- @
@

Conformance Report

User

7. User creates
factory functions
based on GSLs

9. The user compiles
code against the GSLs

Figure 1. The workflow of FACE development and conformance testing.

By following the numerical arrows in the figure, the user can see the process of developing a UoC

and passing it through the CTS:

1. The user must create or import a toolchain configuration file for the user’s specific
compiler/linker/archiver tools, either from scratch or basing it off one of the sample toolchains.
The user must also create or import The Project Configuration file by specifying the profile,

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://www.opengroup.org/face/docsandtools

10.

11.

12.
13.

segment, interfaces the UoC implements and interfaces it uses, and the USM and corresponding
SDM locations (if appropriate).

The user must click on the “Generate GSLs/Interface” button in the toolbar.

The USM’s location is taken from the configured project configuration file. The USM is parsed
for TSS Typed interfaces and/or Life Cycle Management (LCM) Stateful interfaces and be sent to
the UsmIDLGen/DIG tool.

The UsmIDLGen/DIG tool translates the data structures and typed interfaces based on the USM
to IDL.

Ideal generates the IDL into interface headers (C/C++/Ada spec files/Java) files based on the UoC
programming language. These files will be placed into a subfolder of the project folder as the
“Gold Standard” folder (the relative of the subfolder is include/FACE). This process also
generates a text file in this location with all the include paths the user should use to compile
their code for conformance.

The user gathers the generated text file

Based on the CTS Factory Functions header (the generated text file), the user writes their
implementation code (called Factory Functions) that implements each interface being provided
by the UoC from these generated interfaces created in Step 5.

a. Implement each UoC interface based on the language constraints:

i. For C++ and Java, the implementation is a derived class for each interface being
provided. The base/abstract class is the interface class provided in the Gold Standard
Library subfolder include/FACE as generated by the CTS.

ii. For C and Ada, one must create implementations of the functions/procedures.

b. Next, for each FACE interface that the UoC is to “use” (access), the user must also implement
the Injectable interface for that interface.

The user adds the Factory Functions to the .pcfg file in the Objects/Libraries tab

The user compiles their UoC code using the generated headers or spec files or Java files
(depending on language) and the include paths (compiler paths or class paths) provided in the
generated text file.

The user adds the object code to the CTS and runs the Conformance test by pressing the “Test
UoC Conformance” button.

The FACE Conformance Application invokes the DMVT/DAVT, sending the USM and SDM
location

The DMVT validates the USM based on the SDM and sends back the result.
The FACE Conformance Application:
a. Tests source files for injectables that are generated.
b. Compiles CTS Factory Functions using the user-provided Factory Functions file.

c. Tests files (generated and CTS-provided) are compiled and linked with the UoC object(s), CTS
Factory Functions, and GSL libraries into a series of executables (that never are run, as the
CTS only tests to see if a UoC correctly links with the test executables) .

d. Link test is performed with limited GSL libraries to test for inter-UoC restricted calls.

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

14. A PDF conformance report is generated based on the results of step 13. The PDF report contains
all test logs and stack traces to those logs so the user can alter the UoC if there are any failures.

"NAVAIR Public Release 2021-434" 9
Distribution Statement A -"Approved for public release; distribution is unlimited"

2. Installation

2.1. Installation on Linux (CentOS 7/RHEL 7)

2.1.1. User Prerequisites

To successfully install the CTS, the user must have root permission to access network-based
repositories (such as “yum”), package installation privileges, and privileges to change file
permissions (via “chmod”).

Note: These permissions are necessary, as some dependencies are not installed by default. It is
acknowledged that the CTS installation process is not optimized for installation on government
machines or on machines that restrict installation.

2.1.2. System Requirements

Before installation, check the system requirements below to ensure the test suite will run on the
user’s designated machine. The CTS has been developed and tested on CentOS 7. It is highly
recommended to use this version of Linux for the installation of this version of the CTS, as using
other distributions will have varying results.

Table 1. The minimum requirements to run on a Linux-based system.

Minimum Requirements

Operating System CentOS 7, Red Hat Enterprise Linux (RHEL) 7
HDD/SDD 3GB
RAM 4 GB

An Internet connection

For setting up under virtual machine, make sure that the allocated drive has at least 15GB. Doing so
will give the VM enough space to install its operating system, all of prerequisites, and the CTS itself.

Table 2. Dependencies that are required to successfully install the CTS on a Linux-
based system.
System Dependency

Python 2.7 installation, with:
- zlib - a Python compression library
- setuptools - a package used to help install and uninstall other Python packages

Google Protocol Buffers version 2.6.0
Java 1.8]JDK
Any PDF viewer
2.1.3. Language-Specific Prerequisites

The following section lists dependencies that UoCs written in a specific language require.

Table 3. UoC Testing Dependencies for Linux-based systemss.

10 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Language Language Dependency

C GCC/G++ version 4.8 or higher

C++ GCC/G++ version 4.8 or higher

Ada GNAT for GCC version 4.8 or higher

Java Java JDK 1.8

Java Linux alternatives utility package (if more than 1 version of Java is
installed)

Java Ant 1.9.0 or higher

Java Qt5.2.1

Java Browser (if not installing on the command line, which is
recommended)

Details on how to install these dependencies are contained in the following sections. It is important
that the user attempt to install the CTS on a machine with at least the minimum specifications as
stated in the Table 1. The following subsections will guide the user on how to install each of these
prerequisites.

GCC/G++4.8.5

Install gcc/g++ from yum package:

sudo yum install gcc gecc-c++ gee-gnat

This is necessary for C/C/Ada projects and for building and installing the Protocol Buffers library, as
described below. This command will also install required dependencies for the gcc, gce-c, and gece-
gnat packages.

Python 2.7

Python 2.7.5 is installed by default on CentOS 7/RHEL 7. If it is not already installed then install
python 2.7.

The following python packages are included with CTS. Do not use pip to install them as the pip
installed packages can interfere with the CTS included packages and cause execution errors.

* protobuf-2.6.1-py2.7.egg

* pyparsing-2.0.1-py2.7.egg
* stringtemplate3-3.1-py2.7.egg

Protocol Buffers 2.6

Protocol Buffers is a third party library used to define, read, and write the format of messages
between the CTS backend (Python), CTS frontend (Java), and the project/toolchain files
(PCFG/TCEGS). It is also used to define the message format for messages between the backend and
DMVT/DAVT and UsmldlGenerator/DIG via protobuf files. The protocol buffer compiler, protoc,
consumes the protobuf files and generates Python code and Java libraries for reading and writing
messages, project files, and toolchain files.

"NAVAIR Public Release 2021-434" 11
Distribution Statement A -"Approved for public release; distribution is unlimited"

Download protobuf-2.6.0.tar.gz from location https://github.com/google/protobuf/releases/tag/v2.6.0:

wget https://github.com/protocolbuffers/protobuf/releases/download/v2.6.0/protobuf-
2.6.0.tar.gz --no-check-certificate

Unzip protocobuf-2.6.0.tar.gz:

tar -xvf protobuf-2.6.0.tar.gz

Navigate to the protobuf-2.6.0 folder and install Protocol Buffers:

cd protobuf-2.6.0
./configure

make

sudo make install

A successful installation will result in the command line saying something like:

make[3]: Leaving directory ‘/home/<user>/protobuf-2.6.0/src’
make[2]: Leaving directory ‘/home/<user>/protobuf-2.6.0/src’
make[1]: Leaving directory ‘/home/<user>/protobuf-2.6.0/src’

Add the shared library folder to the search path as the root user and reload a cache of the
dynamically linked libraries, so protocol buffers can be used by all users of the machine that it is
being installed on:

sudo su
echo "/usr/local/1lib" > /etc/1d.so.conf.d/local.conf
exit

sudo ldconfig

If you have more than one version of protoc installed you should use alternatives.

sudo alternatives --install /usr/bin/protoc protoc /usr/local/bin/protoc 2
sudo alternatives --install /usr/bin/protoc protoc /var/lib/snapd/snap/bin/protoc 1

Java 8 JDK

The user must install Java 8 JDK. The best way to do this is download via browser, as the user needs
to accept the license agreement before they can download. The user may download from the url:
https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html. It is
recommended to download the “Linux x64” .rpm file of the latest version of Java 8 for a quick
install.

12 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://github.com/google/protobuf/releases/tag/v2.6.0
https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html

The user must navigate to the directory where they downloaded the rpm and execute the following
commands.

sudo yum install jdk-8uXXX-linux-x64.rpm

Optional note: If the user has different major versions of Java present on their installation system,
the ‘alternatives’ utility may be used. The utility allows the user to use and manage different
versions of applications in their environment via symbolic links. By default, it is installed in most
Linux distributions. If it is not installed, the user must install it via the normal means for installing
packages for their Linux distribution. Then, the user must initialize both the “java” and “javac” to
the alternatives package. It is important to include both, as “java” is used to execute Java bytecode,
and “javac” is used to compile Java programs.

sudo /usr/sbin/alternatives --install /usr/bin/java java
/usr/java/jdk1.8.0_XXX/bin/java 2000

sudo /usr/sbin/alternatives --install /usr/bin/javac javac
/usr/java/jdk1.8.0_XXX/bin/javac 2000

If the user executes,

sudo alternatives --config java

they should see a selection display that contains the locations of all of the Java programs installed
on the machine, each with a numeric id. The user can select the Java program they want to be
associated with the name "java" by entering the corresponding id.

There are 4 programs which provide 'java'.

Selection Command
1 java-1.7.0-openjdk.x86 64 (/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.2
2 java-1.8.0-openjdk.x86_64 (/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.2
3 /usr/lib/jvm/jre-1.6.0-openjdk.x86_64/bin/java
4 /usr/java/jdkl.8.0_161/jre/bin/java

.6.22.2.el7_8.x86_64/jre/bin/java)

61-2
82.b08-1.el7_9.x86_64/jre/bin/java)

Enter to keep the current selection[+], or type selection number:

Figure 2. Configuring Default Java Using "alternatives" Utility

If the user executes,

sudo alternatives --config javac

they should see a selection display that contains the location of all of the Java compilers installed on
the machine. The user can select the Java compiler program they want to be associated with the
name "javac" by entering the corresponding id.

The user must set 2 environment varibales for java. It is recommended to add this to the user’s
permanent environment or via terminal startup script at ~/.bashrc. “/DK8_HOME” variable is
defined to point to the base directory of the JDK 8 installation. "JAVA_HOME" variable is set to the

"NAVAIR Public Release 2021-434" 13
Distribution Statement A -"Approved for public release; distribution is unlimited"

"JDK8_HOME" variable.

export JDK8_HOME=/usr/java/jdk1.8.0_XXX
export JAVA_HOME=$JDK8_HOME

Ant 1.9.x

Execute the following command to install Ant:

sudo yum install ant

Note: The default installation version for Ant may be different than 1.9 for the user’s system. Check
the package version in yum before installing. This prerequisite is only required to build sample
UoCs for Java. The user can exclude the Java UoCs when building sample UoCs, if desired.

Qt 5.2.1 (for Java only)

Qt prerequisite is only needed to verify UoCs written in Java. Therefore, users can exclude installing
this prerequisite if they plan to verify only Ada, C, and C++ UoCs.

Download qt-opensource-linux-x64-5.2.1.run from https://download.qt.io/new_archive/qt/5.2/5.2.1.

wget https://download.qt.io/new_archive/qt/5.2/5.2.1/qt-opensource-linux-x64-5.2.1.run
--no-check-certificate

Execute the following commands to start the installer:

chmod 777 qt-opensource-linux-x64-5.2.1.run

./qt-opensource-1inux-x64-5.2.17.run

When prompted by the installer for an install directory, enter:

/opt/Qt5.2.1

14 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://download.qt.io/new_archive/qt/5.2/5.2.1

Qt 5.2.1 Setup X

Installation Folder

Please specify the folder where Qt 5.2.1 will be installed.

Jopt/Qt5.2.1 || Browse...
| < Back I [Next >] | Cancel

Figure 3. Qt Installation Directory

At the end of installation, the user will be prompted with an interface informing them of success. To
check if the user has installed Qt correctly, the user must execute:

/opt/Qt5.2.1/5.2.1/gcc_64/bin/qmake --version

The user has installed Qt successfully if the return value contains:

Using Qt version 5.2.1 in /opt/Qt5.2.1/5.2.1/gcc_64/1ib

Otherwise, the user will be shown an error message to indicate it was not installed successfully.

2.1.4. Installation of CTS

To install the CTS, simply extract the archive file (zip or tar.gz) to a folder somewhere where the
user has read/write/executable access.

Environment Variables

The user must have set the environment variables to correctly hook in with the proper supporting
tools. It is recommended to add environment variables to the user’s permanent environment or via
terminal startup script at ~/.bashrc. It must be defined and exported.

"NAVAIR Public Release 2021-434" 15
Distribution Statement A -"Approved for public release; distribution is unlimited"

Below is a summary of all the environment variables that must be set using .bashrc as the example.
Please note that the user must source the .bashrc or restart the terminal after making changes.

Open ~/.bashrc using nano or another editor:

export JDK8_HOME=/usr/java/jdk1.8.0_XXX
export JAVA_HOME=$JDK8_HOME
export PATH=$PATH:/opt/Qt5.2.1/5.2.1/gcc_64/bin

Please note that the JAVA_HOME variable is used to run the CTS GUI. JDK8_HOME should reflect the
version of Java the user is currently using.

Save, exit the terminal, and start a different terminal to let the environment variables take effect in
the new terminal. Alternatively the user can source the .bashrc file in the same terminal.

source .bashrc

The user will now have Java 8, and Qt5.2.1 as a dependency. To test if the environment variables
were set successfully, the user may execute:

echo $<variable name>

This provides the user with what was set to the specified environment variable.

2.1.5. Running CTS

Ensure you are running in an environment that has all of the above environment variable settings
refreshed. If in doubt, start a new terminal window. Ensure that this setup is correct by running:

java -version

Check that this is a Java 8 version, not the OpenJDK1.8 version. Open JDK is not supported as it
does not provide JavaFX, which the CTS GUI uses. If it is the OpenJDK version (or is not Java 8 at all),
execute:

sudo alternatives --config java

When prompted, enter the number corresponding to the JDK 1.8.

Next, ensure that javac is set to use the Java 8 JDK by executing the following commands:

sudo alternatives --config javac

16 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

When prompted, enter the number corresponding to the JDK 1.8.
Launching CTS
Navigate to the top-level directory of the CTS installation, and execute the below command in a
terminal:
./run_CTS_GUI.py
To produce a verbose output in the execution terminal:

./run_CTS_GUI.py -v

This will launch the conformance main menu as shown in below figure.

File Run Help Y

ﬁ!:f Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS55_Genera...

@ Run Conformance Test
thomejdi/ Des ktop/FACEConformanceT...

".?. Create a Project Configuration
E Create a Toolchain Configuration

e Preferences

f‘ Documentation

Figure 4. The CTS home screen.

2.2. Installation Variance for CentOS 8/RHEL 8

The system requirements and prerequisite requirements for running the CTS on CentOS 8 are the
same as CentOS 7.

GCC/G++4.8.5

Python 2.7

Protocol Buffers 2.6

Java 8 JDK

"NAVAIR Public Release 2021-434" 17
Distribution Statement A -"Approved for public release; distribution is unlimited"

The installation instructions for prerequisites on CentOS 7 applies to CentOS 8 with the exception of
installating Python 2.7. By default CentOS 8 doesn’t have an unversioned system-wide python
command to avoid locking the users to a specific version of Python. Instead, the user has the option
to install, configure, and run a specific Python version.

The steps to install Python 2.7 are as follows:

sudo dnf install python2
sudo alternatives --set python /usr/bin/python2

Please see installation instructions for all other prerequisites from section Section 2.1.3.

Please see instructions for running and launching CTS from sections Section 2.1.5 and Section
2.1.5.1.

Note that Ada can not be tested on CentOS 8 due to the lack of GNAT support on CentOS 8.

2.3. Installation on Windows (Windows 10)

2.3.1. User Prerequisites

To successfully install the CTS, the user must have permissions to save downloaded files to the
filesystem and software installation privileges as well as access to the internet for downloading
prerequisite software.

Note: It is acknowledged that the CTS installation process is not optimized for installation on
government machines or on machines that restrict installation.

2.3.2. System Requirements

Before installation, check the system requirements below to ensure the test suite will run on the
user’s designated machine.

Table 4. The minimum requirements to run on Windows.

Minimum Requirements

Operating System Windows 10 64-bit
HDD/SDD 25 GB
RAM 8 GB

An Internet connection

The processor and graphics card are not included in Table 4, as the CTS is not processor or
graphically intensive.

Table 5 represents an overview of the prerequisites needed to install and execute the CTS. Please

18 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

carefully follow the instructions in “Detailed Instructions for Installing Prerequisites” for installing
each.

Table 5. The prerequisites needed to install CTS on a Windows system.

System Requirements
Python 2.7 with zlib and setuptools support
Java 1.8 SDK

Any PDF viewer

2.3.3. Language-specific Prerequisites

The following section lists dependencies that UoCs written in a specific language require. The
installation of each dependency will be detailed in the “Detailed Instructions for Installing
Prerequisites” for the user’s operating system, contained in this document.

Table 6. UoC Testing Dependencies for Windows 10.

Language Language Dependency msys2.0 package

C/C++/Ada msys 2.0 mingw-w64-x86_64-toolchain
C/C++/Ada msys 2.0 base-devel

C/C++/Ada msys 2.0 msys2-devel

C/C++/Ada msys 2.0 make

Java Java JDK 1.8

Java Ant 1.9.0 or higher

Java Qt5.2.1

The language dependency for C/C++/Ada requires msys2 to install some required software
packages. Msys2 is a software distribution package and building platform for Windows, intended to
provide a POSIX compatibility layer that Windows distributions do not provide. It provides a bash
shell and the ability to build native windows applications using the MinGWw#64 toolchains.

2.3.4. Detailed Instructions for Installing Prerequisites

It is recommended to install the CTS on a machine with at least the minimum specifications stated
in Table 4. The user must have permission to install and run programs on the machine.

Python 2.7

The CTS backend (conformance tests, logic, etc.) runs Python 2.7, and thus must be installed by the
user.

Download and install Python 2.7.x 64 Dbit for Windows by going to
https://www.python.org/downloads/release/python-2715/ . It is recommended to download the
installer, rather than install manually.

Navigate to the “Environment Variables” menu, as done for the Java 8 installation. The user must
add the Python installation folder to their SYSTEM environment path variable at the top of the list
(ex C:\Python27).

"NAVAIR Public Release 2021-434" 19
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://www.python.org/downloads/release/python-2715/

Edit environment variable 4

%) AVA_HOME%\bin A Mew
Ch\ProgramData\DockerDesktop'version-bin

SHroaram Flestiiackar L arkar keen ach Bin Edit

LN _ e . . Browse...
CAProgram Files (xBe\Common Files\Oracle!Java\javapath
ChOracle\product64',12.1.00client_1\bin
ChOradle\producty12.1.00client_14bin Delete
Chmsysed\mingwbdibin
Chmsystd\usribin
%SystemRootd\system32 Maove Up
HoSystemBootio
Y%SystemRoot¥\System32\Whbem Move Down
%SYSTEMROOTH\System32\WindowsPowerShellyw1.04
%SYSTEMROOTH®\Systemn32\OpenS5H),
%ANT_HOME% Edit text..
%ANT_HOME%\bin
CAProgram Files\Git LFS
%Python Pip%
ChProgram Files\ Intel\WiFi\bin,
CAProgram Files\Common Files\Intel\WirelessCommaon?,
C\Program Files (x86}\Intel\Intel(R] Management Engine Compo..

OK Cancel

Figure 5. They Python 2.7 environment variable near the top of the list, with the variable is outlined in red.

The following python packages are included with CTS. Do not use pip to install them as the pip
installed packages can interfere with the CTS included packages and cause execution errors.

* protobuf-2.6.1-py2.7.egg

* pyparsing-2.0.1-py2.7.egg
* stringtemplate3-3.1-py2.7.egg

Java JDK 8

The following subsections detail how to install Java 8 to the user’s system.
Download or acquire JDK 8 from Oracle for Windows 64 bit and install:

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html . The best
way to do this is via a browser, as you need to accept the license agreement.

Next, create a SYSTEM-level environment variable JDK8_HOME set to the folder where you installed
JDK8. To do this, the user must press the start button on their keyboard and type “environment

20 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

variables.” Select “Edit the system environment variables.” When the GUI pops up, the user must
select “Environment Variables” near the bottom of the GUIL

Systemn Properties b 4
Computer Name Hardware Advanced Syslem Protection Remole

You must be logged on as an Administrator to make most of these changes.

Performance
Visual effects, processaor scheduling, memory usage, and virtual memory

Saftings

User Profiles
Desklop settings related to your sign-in

Seltings...

Startup and Recovery
System startup, system faiure, and debugging information

Sattings..

Emaronment Varablas. |

OK Cancel Apply

Figure 6. The system properties interface.

The environment variables button is located after the startup and recovery section. In the
Environment Variables interface, add a “System variable” at the lower half. Select “new”.

"NAVAIR Public Release 2021-434" 21
Distribution Statement A -"Approved for public release; distribution is unlimited"

User variables for -

Variable Value
OneDirive
OneDriveCommercial
Path

TEMP

TMP

MNew... Edit.. Delete
Systern variables
Variable Value N
ComSpec Chwindows\system32cmid.exe
DriverData CAWindows\System32\Drivers\DriverData
GIT_LFS_PATH CAProgram Files\Git LF5
NUMBER_OF PROCESSORS 8
05 Windows_NT
Path Ch\ProgramData\DockerDesktop\wversion-bin:C:\Program Files\D..
PATHEXT COM; EXE;. BAT,.CMD: VBS; VBE. J5: JSE. WSF, W5H; MSC
PROCFSSOR ARCHITFCTLIRF AMDGA ¥
MNew... Edit.. Delate

>

0K Cancel

Figure 7. The environment variables interface.

The user must select the "New" button in the System Variables section in order to add a new system
variable.

Finally, the user must set the variable name to JDK8_HOME’ and the variable value to the folder
where the user installed JDK 8 (example: C:\Program Files\Java\jdk1.8.0_151). The user must name
the Java variable, "JDK8_HOME." The variable value is wherever the user installed Java 8.

Variable name: JDKS_HOME
Variable value: C\Program Files\Java\jdk1.8.0_151
Browse Directory... Browse File... OK Cancel

Figure 8. The new system variable interface.

22 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Using multiple versions of Java

JDK 8 is required to launch the CTS. As there might be multiple installations of different versions of
Java on a user’s system, it is in the user’s best interest to set an interchangeable environment
variable on their machine. The manipulation of the environment variable allows multiple versions
of Java to exist together and the user to switch between them. The user must name the variable,
"JAVA_HOME." The variable references another system variable. In this case, Java 8.

Create a SYSTEM level environment variable JAVA_HOME set to the value: %JDK8_HOME%.

New System Variable X

Variable name: ‘ JAVA_HOME ‘

Variable value: ‘ %JDK8_HOME% ‘
Browse Directory... Browse File... oK Cancel

Figure 9. The environment variables dialogue.

The user must add “%JAVA_HOME%\bin” to the path and move it to the top of the list. The result is
shown in below figure, and outlined in red.

"NAVAIR Public Release 2021-434" 23
Distribution Statement A -"Approved for public release; distribution is unlimited"

Edit environment variable 5

MNew

C: \Pr::ug ram Files\Docker\Docker\Resources\bin Edit
CAPython27

CA\Python2 T,

CAPython2 N\Scripts

C\Program Files (xB6\Common Files\Oracle\Java\javapath
CA\Orade\product64\12.1.0\dient_1\bin Delete
CAOracle\producty12.1.0\client_1\bin

C\msys64\mingw64\bin

Chmsyse4\usribin Move Up
%SystemPoot\system32

SSysternRootd Move Down
SeSystemRootd\System32YWhem
%SYSTEMROOTH®\Systern32\WindowsPowerShell\w 1,00,
%6SYSTEMROOT%\Systern32\OpenSSH\ Edit text...
%ANT_HOME%

WBANT_HOME¥\bin

CA\Program Files\Git LFS

%Python Pip%

CAProgram Files\Inte\WiFTbin',

CA\Program Files\Common Files\Intel\WirelessCommaon,

Browse..,

w

oK Cancel

Figure 10. The PATH variable dialogue, with the JAVA_HOME environment variable outlined in red.

MSYS2 (for C/C++/Ada samples only)

MSYS2 is a development environment that provides better interoperability between Unix-like
installations with native Windows software. The CTS depends on POSIX to process C/C++/Ada
applications, and Windows does not include POSIX. Thus, MSYS2 is required for the CTS to run on a
Windows operating system.

If the user is operating a 32-bit architecture, download MSYS2 from https://www.msys2.org/ .
Download the “msys2-i686” executable. If the user is operating a 64-bit architecture and would like
to install from the official website rather than the CTS-provided installers, download the “msys-
x86_64” executable.

After obtaining the executable, run the executable. Follow the prompts. The installation directory
must be “C:\msys64,” which is the path the CTS looks for when executed.

After installing, open a MSYS2 MINGW 64-bit terminal (or 32-bit, depending on the user’s machine)
by pressing the start key and searching for “mingw.” The application should be at the top of the
start menu.

24 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://www.msys2.org/

In the terminal, update the package database and core system packages.

pacman -Syu

If needed, close the terminal and launch the terminal again. The user can finish updating the
package database and core system packages by executing:

pacman -Su

If there are additional problems with the initial MSYS2 installation, it is recommended to consult
the MSYS2 detailed installation guide at https://github.com/msys2/msys2/wiki/MSYS2-installation.

Install several additional required packages via pacman:

pacman -S mingw-wb4-x86_64-toolchain base-devel msys2-devel make
The user will be prompted to select configuration for the packages that pacman was asked to install.
Select “default - install all,” and confirm with “Y”.
Open file “C:\msys64\msys2_shell.cmd” and edit line “rem set MSYS2_PATH_TYPE=inherit” by
removing 'rem', which will look like the following when done:

set MSYS2_PATH_TYPE=inherit

The same way that an environment variable was added to the path in Java 8, and Python 2.7
installations, the user must add MSYS2 to their environment’s path. MSYS2’s environment variable
also must be near the top. The user must set both “C:\msys64\mingw64\bin” and
“C:\msys64\usr\bin” as environment variables.

"NAVAIR Public Release 2021-434" 25
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://github.com/msys2/msys2/wiki/MSYS2-installation

Edit environment variable 4

%) AVA_HOME%\bin A Mew
Ch\ProgramData\DockerDesktop'version-bin
CAProgram Files\Docker\Docker\Resources\bin

Edit
Ch\Python27
C:\Prtlmn??"l._ﬂcnpts | _ Browse..
CAProgram Files (xBe\Common Files\Oracle!Java\javapath
ChOracle\product64',12.1.00client_1\bin
CAOracle\producty 12.1.00client 1'bin Delete
Chmsysed\mingwbdibin
TesystemRootio\system Maove Up
HoSystemBootio
Y%SystemRoot¥\System32\Whbem Move Down

%SYSTEMROOTH\System32\WindowsPowerShellyw1.04
HSYSTEMROOT®\Systern32\OpenS5H)

%ANT_ HOME% Eclit et
%ANT_HOME%\bin

CAProgram Files\Git LFS

%Python Pip%

ChProgram Files\ Intel\WiFi\bin,

CAProgram Files\Common Files\Intel\WirelessCommaon?,
CA\Program Files (x86)\Intel\Intel(R) Management Engine Compo..

W

OK Cancel

Figure 11. The msys64 path declarations, with variables are outlined in red.

Lastly, the user needs to remove the libdep.a from their MSYS2 installation directory to avoid ar.exe
error 0xc000012f caused by libdep.a.

ar.exe - Bad Image X

|® c\msyse4\mingwe4\lib\bfd-plugins\libdep.a is either not

designed to run on Windows or it contains an error. Try
installing the program again using the original installation
media or contact your system administrator or the software
vendor for support. Error status 0xc000012f.

OK

Figure 12. Error 0xc000012f

26 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

The command to remove libdep.a is:

rm C:\msys64\mingwb64\1ib\bfd-plugins\libdep.a

Ant 1.9.x

Download the Ant binary distribution zip file from https://ant.apache.org/bindownload.cgi. Extract
the “apache-ant-1.9.9-bin.zip” file to “C:\Program Files\”. Ant is precompiled so no installer needs to
be run to have Ant properly work.

Next, the user must create a SYSTEM level environment variable ANT _HOME set to the folder where
the user installed Ant 1.9.9 (example: C:\Program Files\apache-ant-1.9.9).

ew System Variable o
Variable name: | ANT_HOME
Variable value: | C\Program Files\apache-ant-1.9.9
Browse Directory... Browse File... oK o]

Figure 13. Ant environment variable.

"NAVAIR Public Release 2021-434" 27
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://ant.apache.org/bindownload.cgi

Edit environment variable s

%) AVA_HOME%\bin "'* Mew
Ch\ProgramData\DockerDesktop'version-bin

CAProgram Files\Docker\Docker\Resourceshbin Edit
ChPython27

CAPython2 M\Scripts

CA\Program Files (xBe)\Cammeon Files\Oracle' Java\javapath
ChOracle\product64',12.1.00client_1\bin
ChOradle\producty12.1.00client_14bin
Chmsysed\mingwbdibin

Chmsysbdusribin

%SystemRootd\system32 Maove Up
HoSystemBootio

Y%SystemRoot¥\System32\Whbem Move Down
%SYSTEMROOTH\System32\WindowsPowerShellyw1.04

Browse...

Delete

%ANT HOME™ Edit text..
%ANT_HOMES:\bin

FTOCNd =

¥Python Pip%

ChProgram Files\ Intel\WiFi\bin,

Ch\Program Flles\Common Files\Intel\WirelessCommaon',
CA\Program Files (x86)\Intel\Intel(R) Management Engine Compo..

W

OK Cancel

Figure 14. Pointing the system path to the relevant Ant directories, with the variables are outlined in red.

Finally, the user must add “%ANT_HOME%” and “%ANT_HOME\bin% to their SYSTEM-level PATH
variable, near the top.

Qt 5.2.1 (for Java only)

Qt prerequisite is only needed to verify UoCs written in Java. Therefore, users can exclude installing
this prerequisite if they plan to verify only Ada, C, and C++ UoCs.

Download qt-opensource-windows-x86-msvc2010-5.2.1.exe from
https://download.qt.io/new_archive/qt/5.2/5.2.1.

Double click qt-opensource-windows-x86-msvc2010-5.2.1.exe. Follow the prompts and select all
default settings.

Enable Long Paths in Windows 10

The maximum length for a path on Windows is MAX_PATH which is defined as 260 characters.
Starting in Windows 10 version 1607, changing a registry key or using the Group Policy tool is used
to remove the limit.

28 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://download.qt.io/new_archive/qt/5.2/5.2.1

To chanthe registry key:

1. From the start menu launch "regedit".
2. Navigate to HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem.
3. Set the registry key LongPathsEnabled (Type: REG_DWORD) to 1.

To use the Group Policy too:

1. Open Group Policy Editor (Press Windows Key and type gpedit.msc and hit Enter key.

2. Navigate to the following directory: Local Computer Policy > Computer Configuration >
Administrative Templates > System > Filesystem > NTES.

3. Click Enable NTFS long paths option and enable it.

2.3.5. Installation of CTS

To install the CTS, simply extract the archive file (zip or tar.gz) to a folder where the user has
read/write/executable access.

It is recommended to extract CTS close to the root of a drive such as
"C:/FACEConformanceTestSuite_x.x.x" or "D:/FACEConformanceTestSuite_x.x.x" in

NOTE order to minimize the folder path length. This will help reduce runtime failures
resulting from path length and cmd.exe command character length limitations on
Windows.

Installation Variance for Windows Cygwin/GCC Toolchains

To test an Operating System Segment UoC that provides a Cygwin GCC C/C++ toolchain hosted on
Windows for conformance please use the installation variance as described below.
1. Remove MSYS2 from the PATH environment variable.
o C:\msys64\mingw64\bin
o C:\msys64\usr\bin

2. Add Cygwin as bundled in the product to the PATH environment variable.
%CYGHOME%\bin, where %CYGHOME% is the full path to the root Cygwin directory.

Start CTS from the command line, rather than the installed desktop icon that invokes an MSYS2
shell script. The instructions are documented in Test Suite Command Line Options section of this
document.

2.3.6. Running CTS

The user can start the CTS by running the run_CTS_GUIpy script in the root directory of their CTS
installation using Windows Command Prompt. Please note that CTS can not run successfully on
powershell or a MSYS2 MINGW terminal.

"NAVAIR Public Release 2021-434" 29
Distribution Statement A -"Approved for public release; distribution is unlimited"

python run_CTS_GUI.py

This will launch the conformance main menu as shown in below figure.

File Run Help Y

*=4— Welcome to FACE Conformance Test Suite
Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PSSS_Genera... @ T @ e T
fhome/di/Des ktop/FACEConformanceT...
[Create a Project Configuration
s
E Create a Toolchain Configuration

@ Preferences

% Documentation

Figure 15. The CTS home screen.

30 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

3. Theory of Operation

For C, C++, and Ada code, conformance is determined by integrating targeted testing code with
corresponding conformant test code. User applications will be linked with FACE test interfaces.
Customer interface libraries will be linked against by FACE test applications. The test interfaces
provide all possible function calls, data types, and constants available to the customer code. The test
applications utilize all possible function calls, data types, and constants that should exist in the
customer code. The test applications are compiled using the customer’s header files or spec files
(for C/C++/Ada) and then linked against both the customer’s code and the test libraries that contain
the function calls, data types, and constants allowed by the FACE Technical Standard for a given OS
Profile. If the compile and link pass, the customer code is conformant with respect to the
requirements tested. If the compile or link fail, the customer code is not conformant. Errors are
included in the test output.

Conformance
User Code Tast Code Test Result
N
Link PASS
N
Link 1 FAIL

Figure 16. Linked source code interfaces matching and not matching the FACE Technical Standard.

The test only determines conformance with respect to function signature. The test neither proves
nor disproves correctness of functionality. Additionally, for testing the existence of abstract
interfaces, the test does not determine if the customer code implements the interface, only that the
abstract interface is defined correctly in the customer’s headers or spec files. For testing existence
of non-abstract interfaces, the test determines if the interface is defined in the customer code. For
testing use of non-abstract interfaces, the test determines if the interface used by the supplier’s
code is an allowed interface. It will only pass if that interface is allowed either as an interface
defined by the FACE Technical Standard, or allowed per the FACE OS Profile.

3.1. Introduction to Methodology

Two methods of performing the link test exist. One uses the target linker. The other uses the host
linker. The target linker is the linker used to produce an executable targeting the embedded system.
The host linker is the linker used to produce an executable targeting the development system

"NAVAIR Public Release 2021-434" 31
Distribution Statement A -"Approved for public release; distribution is unlimited"

where the CTS runs. Each method has its own advantages.

The target linker method is advantageous in that a project’s existing build infrastructure can be
reused during conformance testing. Additionally, any conditionally compiled code based on
hardware architecture which is reflected in the compiler and linker will be included in the
conformance testing. The disadvantage is that conformance testing authority must know the details
of the target linker.

The host linker is advantageous in that its usage details are preselected in the conformance tool. Its
disadvantage is that conditionally compiled code based on hardware architecture which is reflected
in the compiler and linker may not be included in conformance testing. Additionally, the project’s
build infrastructure would need to be modified to make use of the host compiler and linker.

Compiler
Executable:
Flags:

Output Flag:

Include Paths:

<> X+

Linker

Executable:
Flags:

Output Flag:

Library Paths:

<> x+

Archiver

Executable:

Flags:

Output Flag:

Figure 17. The target linker GUI, found in the Toolchain Configuration Builder’s Tools tab.

3.2. Target Linker Method

If the user chooses the target linker method, they must provide the conformance tool details about
their build tools. The user must provide the path to and name of the compiler, linker, and archiver

32 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

for their build tools. Additionally, the user must provide compiler flags, linker flags, and archiver
flags to provide correct behavior. The flags must instruct the tools to ignore any system included
code such as standard headers and libraries. The flags must also select the correct target language
standard. Table 7, Table 8, and Table 9 provide the minimum set of equivalences the user must
provide. These should be added when using the target linker method.

Table 7 contains flags that are used to let the compiler know what language to compile.

Table 7. Language standard that the CTS supports for a specific language.

Language ISO Language Standard GNU Tools Example

C ISO C 1999 -std=c99

C++ ISO C++ 2003 -std=c03 (or cOx on some compilers)
Ada 1SO Ada 1995 -std=-gnat95

Ada 1SO Ada 2012 -std=-gnat12

Table 8. Compiler flags for Non-OSS tests.

Purpose Flag
disable bundled headers -nostdinc (or -nostdinc++)
disable built-in functions -fno-builtin

Table 9. Linker flags for Non-OSS tests.

Purpose Flag

disable Built-in Libraries -nodefaultlibs -nostartfiles

3.3. Host Linker Method

If the user chooses the host linker method, they must alter their project’s build system to use the
host’s build tools and recompile. The user must be mindful of any conditionally compiled code
based on architecture or compiler.

3.4. Additional Methodology Information

When the user builds their project, they must alter their compiler flags to include the conformance
tool’s Gold Standard Libraries (GSL) directory for I0SS, TSS, and OSS headers. Details on how to
achieve this is described above in the Target Linker Method section.

3.4.1. OSS Testing Methodology

Unlike the other segments, to test the OSS using CTS, the system libraries and include files will need
to be used.

The user will want to specify the language standard, but they will not want to disable the headers
and built in functions and libraries. The user will also need to specify the location of include files

"NAVAIR Public Release 2021-434" 33
Distribution Statement A -"Approved for public release; distribution is unlimited"

and libraries to be used in the system test, either by compiler and linker option flags, or by selecting
include paths and libraries via the configuration GUI as described in the Testing an Operating
System (OSS) Segment section below.

3.4.2. Java Testing Methodology

The Java testing methodology differs greatly from the methodology for C, C++, and Ada. This is due
to the standardized data format of Java’s .class files allowing these files to be universally queried
for information.

PCS and PSS segment class files are queried for their dependencies such as any classes, methods, or
fields necessary to execute. These dependencies are compared against a white list as defined by the
standard. Violations are reported as errors.

0SS, TSS, and IOSS segment class files are queried for their capabilities such as classes, methods,
and fields as well as attributes for each. These are compared against a minimum list as defined by
the standard. Any omissions or incorrect definitions are reported as errors. Additionally, native
methods are flagged as warnings to inspect.

34 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

4. Toolchain Configuration File

4.1. Introduction

A toolchain configuration file (TCFG, .tcfg, toolchain file, toolchain) contains information to
configure and compile CTStest objects. A toolchain configuration file also contains information
about how to link with a user supplied UoC, given the UoC target environment. This information
provides an environment where the CTS can configure the correct environment to use information
stored in the Project Configuration file. The toolchain configuration file ending is .tcfg.

Toolchain configuration files are generated with string template (http://www.stringtemplate.org/), a
freely available template library for generating source code.

4.2. Toolchain Files List

The Toolchain Files List can be accessed by selecting the File > Toolchains option from the
navigation bar.

File Run Help = 7

G New || i 4 Import — Open @ Clone & Remove

Toolchain Files Directory: /home/cts/Desktop/LocalRepo/toolchain/configuration_files Change
\Toolchain File |Language |Segment Type |Notes
C_NonOSS5_General_toolchain.tcfg C MNon 0SS Toolchain C_NonOSS_General_t¢
C_0SS_General_toolchain.tcfg C 0SS Toolchain C_0S5_General_toolct

Figure 18. The Toolchain Files List.

The following options are available either by default or when the user selects a toolchain from the
list view:

* New - Opens the toolchain editor for creation of a new toolchain from scratch.

* Import - Provides a file browser dialog to allow the user to find and select one or more existing
toolchain file(s) and allow it to be copied to the “Toolchain Files Directory” displayed above the
list view. (Note that this option is different from the Project Files List’s Import function because
the user is making a copy of an existing toolchain from another location to the working

"NAVAIR Public Release 2021-434" 35
Distribution Statement A -"Approved for public release; distribution is unlimited"

http://www.stringtemplate.org/

directory location. If the user intends on modifying a toolchain that is not located in the
working toolchain directory, then it is best to change the working toolchain directory to be that
of the directory from which the toolchain resides in.)

* Open - Opens the currently selected toolchain from the list view into the toolchain editor.

* Remove - Removes the currently selected toolchain from the list view. (Note that this option
does not delete the toolchain, but removes it from the list view only.)

* Clone - Creates a copy of the currently selected toolchain and saves it to the “Toolchain Files
Directory”.

* Change - This opens a directory browser dialog to allow the user to change the directory to
search for and display all available toolchains in this toolchain list view.

Further, the user may define a “Toolchain Files Directory”, a directory for the CTS to detect TCFG
files to automatically import into the toolchain file list.

4.3. Building a Toolchain Configuration File

The subsequent sections detail how to build a toolchain file and what each toolchain option means.

To begin, the user must click the "Create a Toolchain Configuration" button on the home page of the
GUL

*example_C_NonOSS_toolchain.tcfg - Toolchain Configuration

vl X
File Run Help <« o

Toolchain Configuration Builder

E’ Check Configuration H Save H Save As ...

General
General
05 Info: Sys: [Linux], Release: [3.10.0-514.16.1.el7.x86_64], Version:...
File Extensions Language: C -

Segment Under Test: ® 1055/PCS/PSSS/TSS 0ss

Tools
0SS Profiles: v General + Safety Extended Safety Base Security
Compiler Specific PATH Additions:
| jusr/bin
X
Notes A
v
Environment Variables Additions:
+ Name Value
dummy 123
hello world
Press here for detailed results... B

Figure 19. The Toolchain Configuration Builder with the General tab selected.

4.3.1. General Tab

The user must select the programming language the UoCs this toolchain are targeted towards. The
language must be the same as the candidate UoC(’s) language it was programmed in.

36 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Next, the user must select the type of segment that the toolchain utilized by. The user must select
either "IOSS/PCS/PSSS/TSS" or "OSS", as the process for testing for conformance for OSS segments
are different.

The user must then define the OSS profile(s) that the candidate UoC(s) satisfy. There may be more
than one profile that is supported by a UoC, and the user must select all that are applicable.

The "PATH addition" section allows the user to include any libraries a UoC may need while being
built or archived. The user may add file paths that include these library locations. For example, on
Linux-based systems if the user has installed gcc, including "/usr/bin", it is required to allow the
toolchain to recognize the path of the compiler.

The "Environment Variables Additions" section allows the user to define an environment variable
name and value. In the sample projects that are generated by the CTS, the environment variables
are "dummy" and "hello" with values "123" and " world," respectively.

4.3.2. File Extensions Tab

*example_C_NonOSS_toolchain.tcfg - Toolchain Configuration ») () (x
File Run Help <« o
Toolchain Configuration Builder
E’ Check Configuration H Save H Save As ...
File Extensions
General
Header: h Object: s}
File Extensions Source: ¢ Executable:
Library: a
Tools
Compiler Specific
MNotes
Press here for detailed results... B

Figure 20. The Toolchain Configuration Builder with the File Extensions tab selected.
The user must define each of the file extensions that their UoC(s) use:

* Choose the extension of the header/source files. o The extension should be the extension used
by the programming language that the segment uses.
» The user may choose the extension used for object files and libraries by the compiler

The user may choose to include the extension used for executable files by the compiler. (Leave
blank for no extension.)

"NAVAIR Public Release 2021-434" 37
Distribution Statement A -"Approved for public release; distribution is unlimited"

4.3.3. Tools Tab

example_C_NonOSS_Safetybase_toolchain.tcfg - Toolchain Configuration - o x

File Run Help & [}

Toolchain Configuration Builder

E’ Check Configuration Il Save H Save As ...
Compiler
General
Executable: cc
File Extensions Flags: [-frno-exceptions -DFACE_SAFETY_BASE_PROFILE -std=c99 -c -fno—b”
Output Flag: -0
Tools Include Paths:
X
N
Compiler Specific
p p v
Notes
Linker
Executable: gcc
Flags: -nodefaultlibs -nostartfiles -00
Outnut Flan: ~
Click the report icon to the right for detailed results... D

Figure 21. The Toolchain Configuration Builder: Compiler Options on the Tools tab.

The user has a choice on which compiler they want to use to test their UoC(s), which must be
defined in the toolchain configuration file.

The "Compiler" section allows for the user to define the compiler executable needed to invoke the
compiler to build, execute, and archive. As stated in the "Theory of Operation" section, the user has
an option on how they want their UoC tested, as defined in "Target Linker Method" and "Host
Linker Method" sections. According to their choice, the user might define the toolchain
configuration file differently.

The user must first define the compiler executable in the "Executable" field. It is recommended to
specify the exact compiler, not the compiler collection if possible (i.e. g over gcc, if constructing a
toolchain for C). Further, the user may click the ellipsis button on the right of the Executable field to
provide an absolute path to the compiler.

There are also fields to define processor-specific flags, and an output flags that a UoC might need to
successfully compile, execute, and archive located below the "Executable" field as shown in the
above figure.

Note: For Ada segments, the user can choose a binder to use during the build procedure.

Note: If the user is using a sample NonOSS toolchain for C and C++, the appropriate macro symbol
should be defined for the profile chosen. This symbol is used by the sample compiler specific
"allowed definitions" code and must be set if using the NonOSS toolchain files. More information
about "allowed definitions" is contained in Allowed Definitions Section.

38 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Table 10. The C and C++ Profile Macro Symbols for Sample Allowed Definition.

Profile Macro Symbol

General Purpose -DFACE_GENERAL_PURPOSE_PROFILE
Safety Extended -DFACE_SAFETY_EXTENDED_PROFILE
Safety Base -DFACE_SAFETY_BASE_PROFILE
Security -DFACE_SECURITY_PROFILE

As a part of the compilation process, UoCs may have external libraries linked to it. The "Linker"
section provides an area where the user may use the "Executable” field to produce the linking
executable or use the ellipsis button to define an absolute path. The CTS also provides a field to
define processor specific flags, an output flag, and specific library paths to be included in the
linking process.

*axample_C_NonOSS_toolchain.tcfg - Toolchain Configuration x) el (x
File Run Help <« o

Toolchain Configuration Builder

E’ Check Configuration H Save H Save As ...

Linker
General
Executable: Id
. . Flags: - ibs - iles -
FiE e g nodefaultlibs -nostartfiles -00
Output Flag: -p

Library Paths: o=
X

~
v

Tools

Compiler Specific

Notes

Archiver

Executable: ar
Flags: cr

Output Flag:

Toolchain Template

Click the report icon to the right for detailed results... |_:|

Figure 22. The Toolchain Configuration Builder: Linker Options on the Tools tab.

The "Archiver"” section allows the user to define an archiver executable to create, modify, or extract
code from archives. The CTS provides fields to provide flags to customize exactly how the user’s
UoC will be archived, as shown in the above figure.

Finally, the user must add a toolchain template file (with file extension .stg) by clicking the ellipsis
button. The toolchain template files contain templates that are used to format toolchain-related
commands for compilers.

After selecting the template and defining the various toolchain commands/flags above, the user
may click the refresh button next to the "Template Output” header in the below figure to show the
example commands the CTS will use based on the commands the user has configured and the
selected template.

"NAVAIR Public Release 2021-434" 39
Distribution Statement A -"Approved for public release; distribution is unlimited"

Note: Without the toolchain template file, the toolchain will be invalid. Toolchain templates for
each FACE supported language can be found in the datafiles/stringtemplate folder of the CTS.

example_C_NonOS5_toolchain.tcfg - Toolchain Configuration v) (~) (x

File Run Help <« ? oy
Toolchain Configuration Builder

E’ Check Configuration = Sav: H Save As ...

Flags: cr
General

Output Flag:

File Extensions Toolchain Template

Tools Toolchain Template File | /home/msmith/conformancetestsuite/datafiles/stringte
Template Output

Compiler Specific Compile Command:

cc -0 EXAMPLE_SOURCE_FILE.o -fno-builtin -nostdinc -std=c99 -c EXAMPLE_SOURCE_FILE.c
Notes

Link Command:

Id EXAMPLE_OB|1.0 EXAMPLE_OB|2.0 -nodefaultlibs -nostartfiles -o EXAMPLE_TARGET

Archive Command:

ar cr EXAMPLE LIB.a EXAMPLE_OB|1.0 EXAMPLE OBJ2.0

Press here for detailed results... |_-J

Figure 23. The Toolchain Configuration Builder: Toolchain Template on Tools Template tab.

4.3.4. Compiler Specific Tab

Compiler Specific Functionality

There is compiler specific information that will be needed to conduct conformance tests. The
“Compiler Specific” tab allows the user to further define compiler parameters needed to
successfully test a UoC within the CTS. This information is stored in the compilerSpecific
subdirectory.

In particular, the mapping between standard types in C/C++ and their exact definitions for a given
compiler will need to be specified. There may also be compiler specific built-in functions/methods
that cause linker errors even when compiler and linking against the OS gold standard libraries (i.e.
main, stack_chk_fail). There may be valid graphics related calls that are not called out specifically in
the standard.

You may add allowed functions to the conformance test by editing the “CompilerSpecific” source
file. This file can be edited in the Compiler Specific section of the toolchain configuration builder.
You only need to add a function stub, since these conformance test objects are never actually
executed. The compiler specific source file is included in the conformance report to show any
functions that were used.

To specify the language mappings, the exact types need to be added to the toolchain file.
Compiler specific methods must be reported to the Verification Authority (VA) (and are included in

40 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

the Test Suite results).

Configuration

Exact Types:

For C and C++ testing, the exact size types must be configured according to the user’s target OS. This
is done through the Compiler Specific tab. The user must consult their compiler’s system definitions
to get the operating system’s defined intrinsic types. The user must then add the intrinsic types in
their respective fields to create a typedef mapping between the intrinsic type and FACE exact type
needed for testing.

Note: Mapping exact types is not required if the toolchain is intended for Ada or Java.

*example_C_NonOSS_toolchain.tcfg - Toolchain Configuration ») () X

File Run Help <« o
Toolchain Configuration Builder

E’ Check Configuration H Save H Save As ...

Exact Types Definitions

General
FACE_int8_t char

. . FACE_intl6_t short int
File Extensions

FACE_int32_t | int

FACE uint8_t unsigned char
Tools

FACE_uintl6_t unsigned short int

. . FACE uint32_t unsigned int
Compiler Specific
FACE_size_t long unsigned int

Notes Supports 64 bit

NULL Definition

#ifdef __cplusplus
/I Define NULL for C++ as the constant 0 with no specific type.
#define FACE_NULL O
#else
/I Define NULL for C as 0 cast to a void pointer.
#define FACE_NULL ((void*) 0)
#endif

Click the report icon to the right for detailed results... D

Figure 24. The Toolchain Configuration Builder, with the Compiler Specific tab selected.

Table 11. The list of intrinsic types that map to FACE’s exact types.

Exact Type Description

FACE_int8_t 8-bit signed integer

FACE_int16_t 16-bit signed integer

FACE _int32_t 32-bit signed integer

FACE _int64_t 64-bit signed integer

FACE_uint8_t 8-bit unsigned integer

FACE_uint16_t 16-bit unsigned integer

FACE_uint32_t 32-bit unsigned integer

FACE_uint64_t 64-bit unsigned integer

FACE size_t Unsigned integer type of the result of sizeof()
"NAVAIR Public Release 2021-434" 41

Distribution Statement A -"Approved for public release; distribution is unlimited"

Null Definition:

In the “NULL Definition” section, the user must define what NULL means for their target operating
system, as compilers may define NULL differently. The NULL type must be configured according to
the system-defined value for “NULL”. This may be done by entering the null TYPES in the null
definition, shown in below figure.

*axample_C_NonOSS_toolchain.tcfg - Toolchain Configuration x) el (x

File Run Help <« o
Toolchain Configuration Builder
E’ Check Configuration H Save H Save As ...

NULL Definition
General)
#ifdef __cplusplus
/I Define NULL for C++ as the constant 0 with no specific type.
. . #define FACE_NULL 0
File Extensions #olce
/I Define NULL for C as 0 cast to a void pointer.
#define FACE_NULL ((void*) 0)

Tools #endif

Compiler Specific
Allowed Definitions

Notes + | Allowed Definition 0

OpenGL Definition

v OpenGL

Click the report icon to the right for detailed results... |_-J

Figure 25. The Toolchain Configuration Builder with the Compiler Specific tab selected.

The user may add allowed definitions in the “Allowed Definitions” section, shown in the below
figure. By adding an allowed definition, the user lets the compiler know what the UoC uses outside
of the OSS’s boundaries. By default, an allowed definition must define an entry point. For example,
if the UoC the toolchain is intended for is an I0SS or TSS, the user must define device driver calls as
an allowed definition. Furthermore, there may also be compiler specific built-in functions/methods
that cause linker errors even when compiling and linking against the OS GSL (i.e. main,
stack_chk_fail) that the user must add as an allowed definition. When a UoC is compiled and linked,
the allowed definitions must be included.

Allowed Definitions:

To write an allowed definition, the user needs to add a function stub and a simple function body,
since these conformance test objects are never actually executed. This allows for the link test to
return with errors. An example of an allowed definition is shown in the below figure. The compiler
specific source file is also included in the conformance report to show any functions that were
used. Compiler specific methods must be reported to the Verification Authority (VA) (and are
included in the CTS results).

There may be valid graphics related calls that are not called out specifically in the Technical
Standard. If the user is creating a UoC with a graphical component, the user must utilize the
“OpenGL Definition” section by checking the “OpenGL” checkbox. Then, the user must select what

42 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

version(s) of OpenGL they are using and link the EGL API, GL2 API, and KHR API platform header
files. These headers define specific function declarations and type definitions for the CTS’s use for
testing graphical interfaces within the UoC(s).

To add an allowed definition, the user must click the “” button on the left of the allowed definitions
pane. When the "" is pressed, the user can write definitions directly within the CTS. The user must
add the code to the header and source tabs by editing the text area.

*example_C_NonOSS_toolchain.tcfg - Toolchain Configuration I MEINe

File Run Help - Ay

Header Code Source Code

v
*2Place any reguired function stubs for the compiler/linker used for test
= i.e. main(), start, etc...

]
#*Be careful to honor profiles.
5

/8

*JThese are known symbols for GCC.

it

#iif defined(GNUC)

12
/13

¥ This is invoked by GCC when stack checking is enabled.
i

viid stack chk fail(void)

1

19

19

#if defined(CYGWIN) || defined({ MINGW32) || defined({ MINGWG4)
v21 /*

22 * This swmhnl dis imnlicitlv nenerated hw GCOC nn some nlatforms

Keep Changes Cancel
Figure 26. The Allowed Definition editor.
4.3.5. Notes Tab

The user has the ability, if needed, to take unique notes on a certain toolchain. This allows the user
to quickly notate specific functionality that the toolchain contains and is shown to the user on the
main "Toolchain File List" interface, in the far-right column.

"NAVAIR Public Release 2021-434" 43
Distribution Statement A -"Approved for public release; distribution is unlimited"

44

*C++_NonOSS_Safetybase_toolchain.tcfg - Toolchain Configuration Y
File Run Help <

Toolchain Configuration Builder

E’ Check Configuration H Save H Save As ...

Motes
General

C++_NonOS5S_Safetybase_toolchain.tcfgtemplate: Example Toolchain Configuration

for C++ using NonOSS segment(s) and safetyBase profile
File Extensions

Tools

Compiler Specific

Notes

Click the report icon to the right for detailed results...

Figure 27. The Project Configuration Builder with the Notes tab selected.

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

5. Project Configuration File

5.1. Introduction

The project configuration file contains all UoC object paths, dependencies, and settings in order to
accurately test a UoC for conformance within the CTS. By defining a project configuration file
within the CTS, a .pcfg file is created with the user’s selected options. This .pcfg file is used by other
tools contained in the CTS to test a UoC for conformance.

5.2. Project Files List

The Project Files List can be accessed by selecting the File from the navigation bar, and “Projects”
from the dropdown.

File Run Help (£}
G New || i Import Open Remowe Clone
Project File 'Segment |Language |Profile Last Mod
testr.pcfg PSS C GENERAL Sep 15, 2018 09:1
C_TSS_Safetybase CSP.pcfg TSS C SAFETY BASE Aug 07,2019 01:3
Ada_PCS Safetybase.pcfg PCS ADA SAFETY BASE Jul 19, 2019 05:25
C_ 1055 Safetyext ARINC825.pcfg 105 C SAFETY_EXT Sep 13, 2019 02:2
UntitledProject(8).pcfg PCS C GENERAL Nov 09, 2018 04:0
C_0S5_ARINC6E53.pcfg 0ss C SAFETY_BASE Oct 02, 2019 04:5
C_TsS_Safetybase_TS.pcfg TS5 C SAFETY_BASE Aug 01, 2019 08:5
C_PSSS_General.pcfg PSS C GENERAL Aug 06, 2019 02:0
C_0SS_POSIX_testl.pcfg PCS C GENERAL Sep 15, 2018 08:2
UntitledProject({7).pcfg PCS C GENERAL Nov 09, 2018 03:5
teststep29.pcfg PCS C SAFETY_EXT Jun 04, 2019 01:4:
C_0S5_ARINC6E53.pcfg 0ss C GENERAL MNowv 13, 2019 02:1
UntitledProject(5).pcfg 0ss C GENERAL Sep 15, 2018 06:3
C_PCS_Safetybase.pcfg PCS C SAFETY BASE Jul 19, 2019 05:25
C_0SS_POSIX.pcfg 055 C GENERAL Aug 13,2019 02:1
UntitledProject({6).pcfg TSS C GENERAL Nov 09, 2018 04:2
testy.pcfg PCS C GENERAL Sep 10, 2018 01:4
test.pcfg 0ss C GENERAL Sep 10, 2018 01:4

Figure 28. The Project Files List.

This view represents a working sandbox view of project files that have been created or recently
edited. Selecting a project from this list view will provide access to the following options:
* New - Opens a new file dialog to create an empty project from scratch.

* Import - Provides a file browser dialog to allow the user to find an existing project file and
allow it to be added to the list view.

* Open - Opens the currently selected project from the list view.

* Remove - Removes the currently selected project from the list view. (Note that this option does
not delete the project but removes it from the list view only)

* Clone - Creates a copy of the currently selected project and saves it at the same location as the

"NAVAIR Public Release 2021-434" 45
Distribution Statement A -"Approved for public release; distribution is unlimited"

original

» Test Project — Executes the test procedure on the currently selected project.

5.3. Building a Project Configuration File

The following subsections detail each option available to the user in the Project Configuration
builder. Sections 7.2 and 7.3 explain how to set the project configuration file for a specific UoC type
(PCS, PSSS, TSS, 10SS, and 0SS) through the CTS. Unlike toolchain configuration files, one project
configuration file is defined for every FACE UoC.

Upon opening a project configuration file within the CTS, the user will see the Project Configuration
Builder interface.

5.3.1. General Tab

UntitledProject.pcfg - Project Configuration - o x
File Run Help _ o fm
3
Project Configuration Builder
General

General

Base Directory: /
Data Model Segment: PCS b

Language: £ o
Gold Standard Libraries Profile: General v

Partition: POSIX b
Objects/Libraries POSIX Multi Process: Use Multi Process APls

ARINCB53 Part 1 Version:
Notes

OpenGL: None v
z Toolchain: +
Project Info
UoP Name:

Click the report icon to the right for detailed results...

Figure 29. The Project Configuration Builder with the General tab selected.

For project configuration files to construct file paths, the user must define a base directory in the
“Base Directory” field. All files that are then selected within the project configuration file containing
a relative path to the absolute file, based on this base directory. For example, if the user declared
their base directory to be “/home/user/CTS,” and decided wanted to select a toolchain file located at
/home/user/CTS/test-toolchain.tcfg, the toolchain path will be just “test-toolchain.tcfg.”

The user must then select the FACE UoC segment the UoC is (PCS, PSS, TSS, I0S, 0SS), the language
the UoC is programmed in, and OSS profile that the UoC reflects.

In FACE UoC development, the type of partition must be defined. The user must select a type of

46 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

partition the UoC will execute from. There are options for POSIX, ARINC653, and POSIX ARINC653.

* ARINC 653: For an OSS UoC providing ARINC 653 APIs, this indicates the UoC provides all the
required ARINC 653 APIs for the selected profile in the FACE Technical Standard 3.1 (further
inputs are required in the Objects/Libraries tab as described later). For all other UoCs, this
indicates the UoC may use any of those ARINC 653 APIs provided by another OSS UoC as
required by the standard.

* POSIX: For an OSS UoC providing POSIX APIs, this indicates the UoC provides all the required
POSIX APIs for the selected profile in the FACE Technical Standard 3.1 (further inputs are
required in the Objects/Libraries tab as described later). For all other UoCs, this indicates the
UoC may use any of those POSIX APIs provided by another OSS UoC as required by the standard.

* POSIX ARINC 653: For an OSS UoC providing POSIX and ARINC 653 APIs, this indicates the UoC
provides all the required POSIX APIs for the selected profile in the FACE Technical Standard 3.1,
and the subset of required ARINC 653 APIs that an OSS UoC in a POSIX environment can provide
as defined in the FACE Technical Standard, Edition 3.1 (further inputs are required in the
Objects/Libraries tab as described later). For all other UoCs, this indicates the UoC may use any
of those POSIX APIs or the subset of ARINC 653 APIs provided by another OSS UoC in a POSIX
environment as required by the standard.

For an OSS UoC the POSIX Multi Process APIs can all be tested per the FACE Technical Standard 3.1
if the Use Multi Process APIs checkbox is selected. For other segments this Use Multi Process APIs
checkbox, if checked, will indicate that the UoC may use these APIs.

If the user has selected ARINC653 or POSIX ARINC653 as their target partition type, the “ARINC653
Part 1 Version” options will be available for selection. This defines which ARINC 653 partition
version the UoC is targeted towards.

The user has the option to select what OpenGL APIs the UoC uses, if at all.

The user must input the toolchain configuration file the candidate UoC must be compiled with.
Toolchain Configuration Files contain more information about toolchain configuration files. The
user may either use an existing or sample toolchain file, or create a new toolchain configuration by
following the procedure from the Toolchain Configurations Files section.

Finally a UoP name must be set and this name must match the name given to it in the data model
they will be using for PCS and PSSS UoCs.

5.3.2. Data Model Tab

"NAVAIR Public Release 2021-434" 47
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration - o x

File Run Help < I

Project Configuration Builder

B H 4l ® %

Data Model
General

Shared Data Model:

Data Model
UoP Supplied Model:

Gold Standard Libraries

Entity Unigqueness Observable Uniqueness
Objects/Libraries
Notes
Project Info
Click the report icon to the right for detailed results... J

Figure 30. The Project Configuration Builder with the Data Model tab selected.

The Data Model tab allows the user to provide the location of the SDM and USM. The ellipses
buttons at the right of each input field allows the user to provide an absolute path via file dialogue.

In case the user decided to define every entity as unique in their USM, they must check “Entity
Uniqueness” under the USM field. If the user decided to define every observable as unique in the
USM, they must check “Observable Uniqueness” under the USM field.

Finally, the user may select what UoP model corresponds to the UoC under test. The dropdown list
will be automatically populated when a valid USM is entered in the USM field. Once a UoP model is
selected, the “Associated Views” text box will automatically populate with the relevant views for
that UoC.

5.3.3. Gold Standard Libraries Tab

The GSL tab allows the user to specify the location the GSLs will be generated.

48 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration - o x

File Run Help € oy

Project Configuration Builder

B H MM ® %
Gold Standard Libraries

General
GSL Directory: | /

Data Model

Gold Standard Libraries
Objects/Libraries
Notes

Project Info

Click the report icon to the right for detailed results... CJ

Figure 31. The Project Configuration Builder with the Gold Standard Libraries tab selected.

The user must use the ellipses button on the right of the “GSL Directory” field to select a path for the
GSLs to be generated.

5.3.4. Objects/Libraries Tab

The Object/Libraries tab allows the user to define a UoC’s dependencies, either object file or source
code location, and select the FACE Interfaces that a candidate UoC uses/provides.

"NAVAIR Public Release 2021-434" 49
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration - o x

File Run Help - A

Project Configuration Builder

E’ 0w | H M @ *
PCS
General
R
X
Data Model Include Paths: A
4
Gold Standard Libraries Y
b 4
Hae: M
Objects/Libraries Include Files: <

Notes

Project Info
® Provide Segment Objects/Libraries
E Objs/Libs: (.
&
X
Click the report icon to the right for detailed results... |_-J

Figure 32. The Project Configuration Builder with the Objects/Libraries tab selected.

The CTS has no knowledge of how the object files ‘include’ a header, so the user must define all
locations that an invoked header is used from. In the VA process, the user must supply these
headers to the VA along with the respective file structure as defined in the project configuration
file.

The user must supply both the paths of the directories and the absolute path of the files that must
be included for the UoC.

50 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration - o x

File Run Help g ~

Project Configuration Builder

B H N ® %

General

Data Model ® Provide Segment Objects/Libraries

Objs/Libs: (3.
|l‘_|'

W

Gold Standard Libraries

< > X[

Objects/Libraries

Notes = |
Generate Objects/Libraries from source code
Project Info
Click the report icon to the right for detailed results... D‘

Figure 33. The Project Configuration Builder with the Objects/Libraries tab selected.

As per Target Linker MethodThe user may provide object files for conformance testing. In the
“Provide Segment Objects/Libraries” section of the user interface, the user may select the object
files for the UoC under test. This section of the Objects/Libraries interface is shown in the above
figure. Alternately, the user may choose to provide source files to generate Objects/Libraries from
source as explained in Host Linker Method. The section that allows the user to define the location of
their source files is show in the below figure.

"NAVAIR Public Release 2021-434" 51
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject. pcfg - Project Configuration - @ =

File Run Help “— it

Project Configuration Builder

E’ :-H“ @*

Genaral
Generabe Objects/Libraries from source code
Data Model

Gold Standard Libraries

Objects/lUbraries

Notes
Project Info
Source file with factory functions for interfaces provided (C/C++/Ada only):
Life Cvrle Mananameant Interfaces imnlamantad:
Click thie report icon to the right for detalled results... A

Figure 34. The Project Configuration Builder with the Objects/Libraries tab selected.

The user must specify the absolute path of their concrete implementation of Factory Functions for
their UoC. More information about Factory Functions and how the user creates a Factory Functions
for specific UoC types can be found in Sections 7.2.1.3 and 7.3.2.1.2.

The user must select any interfaces used in the candidate UoC. It is important to note that there is a
difference between a “provided” interface and a “used” interface. If the user provides a “used”
interface, the user must supply an injectable for that interface.

52 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration - o x

File Run Help < [y

Project Configuration Builder

Z H 4R ® #®

PCS
General

Source file with factory functions for interfaces provided (C/C++/Ada only):
Data Model
Life Cycle Management Interfaces Implemented:

Gold Standard Libraries LEM IHitiglizable
LCM Configurable
LCM Connectable
LCM Stateful
Specify LCM Stateful Interface Provided by UoC (only for I0S/TSS)
Notes Reported Type Name:

Objects/Libraries

Reported Type UoP Model Name:
Project Info
Request Type Name:

Request Type UoP Model Name:

FACE Interfaces Used:
LCM Initializable

Click the report icon to the right for detailed results... E

)

Figure 35. The Project Configuration Builder with the Objects/Libraries tab selected.

The section to define Life Cycle Management (LCM) interface implementations are shown in the
above figure if the user supplies an LCM Stateful interface.

» For PCS/PSSS UoCs, the associated datatypes must be modeled in the USM. The CTS will pull
those in order to generate the Stateful interface.

» For TSS and I0SS UoCs, since USM is not required, the user must give the CTS information on the
LCM Stateful interface via the “Reported Type Name” field, “Reported Type Data Model Name”
field, “Request Type Name” field, and the “Request Type Data Model Name” field. Each of the
Stateful interfaces provides a mechanism to transition a UoC between states. However, the
Reported and Requested types are typically a different list of potential states, thus resulting in
two different enumerated datatypes.

o The Reported state includes all potential states that a UoC can be in.
- The Requested state includes the states that an external agent can request a state change to.
The section to define used FACE Interfaces is shown in the below figure. For used Stateful

interfaces, the user must provide the interfaces that the UoC is going to use to transition another
UoC.

"NAVAIR Public Release 2021-434" 53
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration - o x

File Run Help = n

Project Configuration Builder

E’ 1 H u @ *

PCS

General
FACE Interfaces Used:

LCM Initializable
Data Model
LCM Configurable

LCM Connectable
Gold Standard Libraries i ; 5
Configuration Services

TSS Component State Persistance
Objects/Libraries Analog 1/O Interface

Notes

Project Info

Click the report icon to the right for detailed results... L'_'

Figure 36. The Project Configuration Builder with the Objects/Libraries tab selected.

The section to define used LCM Stateful interfaces is shown in below figure. Here, the user must
provide the interfaces that the UoC is going to use to transition another UoC.

UntitledProject.pcfg - Project Configuration - o x

File Run Help < Y

Project Configuration Builder

B H 4N ® *

PCS

General
LCM Stateful Interfaces Used by UoC

Uses LCM Stateful Interfaces
Data Model

Gold Standard Libraries
Objects/Libraries

Notes

Remove Stateful Interface Used
Project Info
Add New LCM Stateful Interface Used by UoC

Reported Type Name:
Reported Type UoP Model Name:

Reauest Tvpe Name:

Click the report icon to the right for detailed results... D

Figure 37. The Project Configuration Builder with the Objects/Libraries tab selected.

54 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

5.3.5. Notes Tab

The user may add notes to uniquely identify a certain project configuration. Anything the user
writes will show in the Project File List for quick selection.

UntitledProject.pcfg - Project Configuration - o x
File Run Help < I
Project Configuration Builder
E H M BN ® ®
Notes
General
Data Model
Gold Standard Libraries
Objects/Libraries
Notes
Project Info
Click the report icon to the right for detailed results... D

Figure 38. The Project Configuration Builder with the Notes tab selected.

5.3.6. Project Info Tab

"NAVAIR Public Release 2021-434" 55
Distribution Statement A -"Approved for public release; distribution is unlimited"

UntitledProject.pcfg - Project Configuration R A

File Run Help (= Y

Project Configuration Builder

B H M N ® %

General 05 Info:

Sys: [Linux], Release: [3.10.0-957.el7.x86_64], Version: [#1 SMP Thu Nov 8
Data Model 23:39:32 UTC 2018], Arch: [64 bits]

Gold Standard Libraries

Project Directory:
!

Objects/Libraries
Notes

Project Info

Click the report icon to the right for detailed results... [J

Figure 39. The Project Configuration Builder with the Project Info tab selected.

The Project Info tab provides information about the project configuration file that has been defined
in other sections of the Project Configuration Builder. The user cannot edit any of these sections,
rather, they may edit other sections. Changes in other sections are reflected in the overall project.
The above figure shows the Project Info tab for the Project Configuration Builder that does not have
any options selected, and thus does not have any project information except the detected OS
version.

56 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

6. Sample Project and Toolchain
Configuration Files

Optionally, the user may generate CTS-provided sample projects and generate toolchain files using
an included python script. These must be generated using the testUtility.py script, found in the [root
directory of CTS]/sample directory.

Sample projects and toolchains are provided for each FACE segment.

» For TSS segments, the UoC name is assumed to be "UOPName."
* For IOSS segments, the UoC name is assumed to be "UOPName."
» For PCS, the UoP name is taken from the sample data model and is set to "UoP1"

» For PSSS, the UoP name is "UoP2" (also per the sample data model).
Folders under the 'sample’ directory are as follows:

* projects - contains sample projects for all languages.
* toolchains - sample toolchains.

» datamodels - sample data model used by sample projects.

6.1. Build Flags

Generating all samples at once may not be feasible for the user. Luckily, the testUtility.py script
allows for flags that delimit sample generation based on language, profile, FACE segment, and
others.

To avoid longer build times, it is recommended that the user may want to set their build flags to
build one language at a time (“-c”, “-p”, “-a”, and “-”).

Table 12. A list of all possible flags in executing the testUtility.py script.

Flag Usage

-h, --help Shows the help message and lists all possible flags.
-w, --windows Running this script on Windows

-a, -ada Enables Ada

-C, --C Enable C

-p, --cpp Enable C++

-j, -java Enable Java

-y, --pcs Generate PCS Test

-S, --Psss Generate PSSS Test

-t, —-tss Generate TSS Test

-i, --ios Generate I0SS Test

-0, --0SS Generate OSS Test

--general Generate General Purpose OS Segment Profile

"NAVAIR Public Release 2021-434" 57
Distribution Statement A -"Approved for public release; distribution is unlimited"

Flag Usage

--safety_base Generate Safety Base OS Segment Profile

--safety_ext Generate Safety Extended OS Segment Profile

--security Generate Security OS Segment Profile

-e, --projects Generate project (PCFG) files from all PCFG templates found in each language directory
-1, --toolchains Generate toolchain files and generate toolchain-related files from all TCFG templates

found in each language directory

-g, --build_gsls Build all GSLs (Gold Standard Libraries) for each enabled language into build_GSL
subdir of tests/uops/[lang] (only necessary for running OSS project files which
reference the GSLs in this directory)

-u, --build_uocs Build UoPs/UoCs for each enabled language

-, --run Run all project (PCFQG) files in each language directory

-q, --quick Run steps --projects, --build_uocs, and --run for enabled languages

-n, --gen_only Runs steps --projects, --toolchains, --build_gsls, and --build_uocs for enabled languages

These flags may be mixed and matched. For example, if the user chooses to generate C and C++ for
profiles General and Security, the user can use the below command to build C/C++ samples and
generated files for the profiles General/Security samples:

python testUtility.py --gen_only -cp --general --security

6.2. Linux Generation

Navigate to the top-level directory of CTS. Then, navigate to the “sample” subdirectory:
cd sample

If the user chooses to generate sample tests for all provided languages (C, C++, Ada, and Java) they
can use the below command to generate all samples project configuration files, toolchain
configuration files, gold standard libraries, and build the generated UoCs:

python testUtility.py --gen_only

Note: Users should expect longer time to generate all the possible project & toolchain
configurations.

6.3. Windows Generation

Set the JAVA_HOME variable to JDK 8 in order to be able to build the Java sample projects.
export JAVA_HOME=$JDK8_HOME

(This is not required if only the C/C++/Ada samples will be generated).

58 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

IMPORTANT: Open a Windows command prompt. All sample generation must be in the Windows
command prompt.

Navigate to the top-level directory of CTS. Then, navigate to the “sample” subdirectory:

cd C:\CTS\conformancetestsuite\sample

If the user chooses to generate sample tests for all provided languages (C, C++, Ada, and Java) they
can use this command to build all samples and generated files for the samples:

python testUtility.py --gen_only

WARNING: Generating all sample project and toolchain configurations will take a long time (about
2.5 hours). The user should use at their own discretion.

A successful generation of the samples will result in no errors from the generation logs and
populated folders under the 'sample’ directory:

* projects - contains sample projects for all languages. Source code for C/C++/Ada is stored
alongside the project.

* toolchains - sample toolchains.

* datamodels - sample data model used by sample projects.
Note: The testUtility.py script generates project files for the CTS (files with extension .pcfg) from
templates. These templates are not native CTS projects. They are used only for the sample projects,
since the project file requires an absolute path as the base directory for the project. The
testUtility.py script generates the project files using the user’s system’s path to the CTS. The

template files (files with extension .pcfgtemplate) are not complete CTS files and cannot be opened
with the CTS GUL

The samples provided are configured for a GCC / GNAT based toolchain. In order to use a different
toolchain, modify toolchain configuration template file (files with extension .tcfgtemplate) for the
desired language with a text editor. Then, rerun testUtility.py with “-e -1” flags to regenerate the
toolchain configurations:

On Windows:

python testUtility.py --gen_only -e -1

On Linux:

python testUtility.py --gen_only -e -1

There are some sample OSS projects that are included with Linux but are not included with the
Windows distribution. This difference is some of the sample OSS projects (C and C++) for Windows

"NAVAIR Public Release 2021-434" 59
Distribution Statement A -"Approved for public release; distribution is unlimited"

fails due to MINGW not being FACE conformant.

6.3.1. Regarding Failing Test Results and Shared Data Model

Part of the full conformance test is a test of the data model provided by the project, where
applicable. Part of the data model test involves testing of the SDM, which is not included in the CTS
distribution. Therefore, for all sample projects, the USM is used for both the USM and SDM. Because
of this, the SDM portion of the data model test will fail. Since the data model test fails, the overall
test result is marked as failed in the test report and the CTS. However, if the user examines the
report, they can that see the rest of the test results are shown separately as PASS.

For the sample projects, the expected result is PASS for all sample projects except for the
C_0OSS_POSIX.pcfg and

CPP_OSS_CPPO03.pcfg tests on Linux and all the C and C++ OSS tests on Windows. (This is because
both Linux and Windows are not FACE Conformant).

60 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

7. Testing a UoC

7.1. Overview

A high-level overview of the steps a user will follow to test a UoC is as follows:

1.

Create the data model (USM) for your UoC (if your UoC uses or provides any type-specific
interface — the TSS Type Specific or Life Cycle Management (LCM) Stateful interfaces).

Create a toolchain for your specific compiler/linker/archiver tools, either from scratch or basing
it off one of the sample toolchains. The sample toolchains can also be used directly if desired.
The toolchain information is saved in a toolchain configuration file (.tcfg).

Create a basic project by specifying the profile, segment, interfaces the UoC implementation and
interfaces it uses, and the data model (if appropriate). The projection information is saved in a
project configuration file (.pfcg).

Run the “Generate GSLs/Interface” button in the toolbar. This will generate all the interface
headers (C/C++) / Ada spec files / Java files for the interface that UoC can access or will
implement. These files will be placed into a subfolder of the folder specified in the project as the
“Gold Standard” folder (the relative path of the subfolder is include/FACE). This process also
generates a text file in this location with all the include paths the user should use to compile
their code for conformance.

The user writes their implementation code that implements each interface being provided by
the UoC from these generated interfaces created in the previous step. For example, for C++ and
Java, the implementation is a derived class for each interface being provided. The base/abstract
class is the interface class provided in the Gold Standard subfolder include/FACE as generated
by the CTS. For C and Ada, one must create implementations of the functions/procedures. Next,
for each FACE interface that the UoC is to “use” (access), the user must also implement the
Injectable interface for that interface.

User compiles their UoC code using the generated headers or spec files or Java files (depending
on language) and the include paths (compiler paths or class paths) provided in the generated
text file. Alternatively, source files can be provided, and the CTS will build them into object or
class files using the toolchain configuration.

User completes their CTS project configuration by pointing it to the implementation object files
(or classes for Java) and runs the CTS.

7.2. Testing a Portable Components Segment (PCS) UoC

The following subsections details instructions to successfully generate a valid project configuration
file for a PCS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

7.2.1. What the User Must Provide

The user must provide the following inputs to the CTS:

"NAVAIR Public Release 2021-434" 61
Distribution Statement A -"Approved for public release; distribution is unlimited"

» The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.

 The project’s header files (C/C++) or spec files (Ada).
* The project’s USM.

* The project’s toolchain file.

7.2.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.
2. Start the conformance test suite by running the run_CTS_GUIpy script in the main test suite

directory from the command line.

File Run Help ‘A

ﬁgr Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS55_Genera...

thomejdi/ Des ktop/FACEConformanceT...

@ Run Conformance Test

".?. Create a Project Configuration
E Create a Toolchain Configuration

e Preferences

f‘ Documentation

Figure 40. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

62 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

=

Create New Project - FACE Conformance Test Suite 3.0r0-SNAPSHOT x

Create a New Project Configuration

Project Name: [P

Project Location: | /home/tstittleburg/CTSProjects

Ok Cancel

Figure 41. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

*CPP_PCS_General.pcfg - Project Configuration ») () (x
File Run Help o

Project Configuration Builder

General
General
Base Directory: /home/cts/Desktop/LocalRepo/sample/projects/CPF
Lz ol Segment: PCS A
Language: C++ -
Gold Standard Libraries
Profile: General =
Objects/Libraries Partition: POSIX ARINCE53 -
POSIX Multi Process: Use Multi Process APls
Notes ARINCE53 Part 1 Version: 2010 -
OpenGL: None -
Project Info)
Toolchain: .f.f) Sroolchains/CPP/General /[C++_NonC| | - +
UoP Name: UoP1
Click the report icon to the right for detailed results... D

Figure 42. Project Configuration Builder General tab

6. Fill in all options on the General tab for
a. Base Directory
b. Select “PCS” as segment
c. The Language the candidate UoC was written in
d. The OSS profile the candidate UoC was intended
e. The partition type the UoC was intended

i. Enable POSIX multi process APIs if required

"NAVAIR Public Release 2021-434" 63
Distribution Statement A -"Approved for public release; distribution is unlimited"

ii. If ARINC653 or POSIX ARINC653 was selected for partition type, select what ARINC653
version is required

f. If the UoC contains graphics API calls, select from the OpenGL dropdown
g. Add the targeted toolchain path
h. Set the UoP name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.

CPP_PCS_General.pcfg - Project Configuration ») () (x

File Run Help “ ‘A

Project Configuration Builder

Data Model

General

Shared Data Model: oAt datamodels/model _3_1.face
Data Model

UoP Supplied Model: oAt datamodels/model _3_1.face
Gold Standard Libraries

Entity Unigueness Observable Uniqueness

Objects/Libraries UaP: UaP1 -

Associated Views:

Notes
PVl
T1
Project Info T2
Click the report icon to the right for detailed results... D

Figure 43. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.

64 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_PCS.pcfg - Project Configuration x) el (x
File Run Help <« o

Project Configuration Builder

B H 4 H ® #®

Gold Standard Libraries
General

GSL Directory: | /home/cts/workspace/conformancetestsuite2/sample/projects/
Data Model
Gold Standard Libraries
Objects/Libraries

Notes

Project Info

Click the report icon to the right for detailed results... |_:|

Figure 44. Gold Standard Libraries tab

9. Select the Objects/Libraries tab to display the portable components options shown below. For
C/C++ projects, use the list boxes to add the include files and include paths (if applicable) for the
concrete interface implementations provided by the UoC. All 'include files' must exist in one of
the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.2.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Files Obb/Lib tab.

a. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.

"NAVAIR Public Release 2021-434" 65
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_PCS.pcfg - Project Configuration x) el (x

File Run Help <« o

Project Configuration Builder

B H 4 H ® #®

PCS

General

+

X
Data Model Include Paths: -

v
Gold Standard Libraries +

X
Obi . . . A

jects/Libraries Include Files:

v

Notes

Project Info

® Provide Segment Objects/Libraries

Objs/Libs: (7 build/Configuration_Injectable_FACE_Configuration_Inje...
o
';r build/CSP_Injectable_FACE_TSS_CSP_CSF_lInjectable_Inj...

Click the report icon to the right for detailed results... L'_]

Figure 45. Include Paths and Files

10. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle

Management (LCM) Stateful interface is implemented, the datatypes are defined by the
architecture model selected.

CPP_PCS_General.pcfg - Project Configuration ») () (x

File Run Help < Y

Project Configuration Builder

B H 4 & ® %

General LCM Initializable

LCM Configurable

Data Model LCM Connectable
LCM Stateful
Gold Standard Libraries Specify LCM Stateful Interface Provided by UoC (only for I0S/TSS)

Reported Type Name:
Objects/Libraries Reported Type UoP Model Name:

Request Type Name:

Notes Request Type UoP Model Name:

FACE Interfaces Used:
LCM Initializable
LCM Configurable

Project Info

LCM Connectable

v Configuration Services

Click the report icon to the right for detailed results... L'_]

Figure 46. Life Cycle Management

66 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

11. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC “uses” a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

*CPP_PCS_General.pcfg - Project Configuration ») () (x
File Run Help <« o

Project Configuration Builder

B H 4 H ® #®

PCS

General FACE Interfaces Used:

LCM Initializable

Data Model LCM Configurable
LCM Connectable
Gold Standard Libraries v Configuration Services

v | TSS Component State Persistance

Objects/Libraries

Notes

Project Info

Health and Fault Monitorina (HMFM) Interface

Click the report icon to the right for detailed results... D

Figure 47. FACE Interfaces Used

12. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life

Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

i. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype

"NAVAIR Public Release 2021-434" 67
Distribution Statement A -"Approved for public release; distribution is unlimited"

CPP_PCS_General.pcfg - Project Configuration ») () (x

File Run Help “ ‘A
Project Configuration Builder

B H 4 & ® #

PCS

General
LCM Stateful Interfaces Used by UoC

Uses LCM Stateful Interfaces
Data Model

Gold Standard Libraries
Objects/Libraries

Notes

Remove Stateful Interface Used

Project Info
Add New LCM Stateful Interface Used by UoC
Reported Type Name:
Reported Type UoP Model Name:
Click the report icon to the right for detailed results... D

Figure 48. Life Cycle Management Interfaces Used

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For a PCS the user will need any TSS headers the UoC code uses, as
standardized in the FACE Technical Standard. The CTS will generate these headers for the user.
Click the Generate GSLs Button in the upper left corner of the window as shown below to generate
the FACE headers as well as the GSL.

e

*C 0SS ARINC653.pcfg - Proje«

File Run Help

Project Configuration Builder

E’HJA&

enerate Gold Standard Libraries

General
Figure 49. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s ‘include/FACE’ subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated

68 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

CPP_PCS_General.pcfg - Project Configuration ») () (x

File Run Help < Y

Project Configuration Builder

PCS
General
® Provide Segment Objects/Libraries
Data Model Objs/Libs: (L build/Configuration_Injectable_FACE_Configuration_Inj...
P
+ build/CSP_Injectable_FACE_TSS_CSP_CSP_Injectable_|...
Gold Standard Libraries X build/TypedTS_Injectable_FACE_TSS_UoPModelName_...
-
build/TypedTS_Injectable_FACE_TSS_UoPModelName_...
v
build/TypedTS_Injectable_FACE_TSS_UoPModelName_...
Objects/Libraries
Notes Generate Objects/Libraries from source code
Project Info
Click the report icon to the right for detailed results... |_-J

Figure 50. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a “Factory Function.”

Note: Once the user creates their Factory Function declaration and the user runs the conformance
test, a test file declares a pointer to a FACE interface. Then, the CTS instantiates it by calling the
Factory Function implementation that the user provided. Once instantiation is complete, it calls
each method defined in the interface to ensure complete adherence to the interface.

"NAVAIR Public Release 2021-434" 69
Distribution Statement A -"Approved for public release; distribution is unlimited"

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
“CTS_Factory_Functions” in the generated subfolder 'build/GSL/include’, which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE ‘abstract’ class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the "..." button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select E¥ to verify that the Project Configuration File is valid.

2. Clickthe ® button atthe top ofthe screen to test the segment. (This may take a few minutes). The
results will be written to a PDF file. The directory of the results file will be in the directory of the
project configuration file. This directory path will be listed in the "Output File Location" of the
Conformance Test Results page.

7.3. Testing a Platform Specific Services Segment
(PSSS) UoC

The following subsections details instructions to successfully generate a valid project configuration
file for a PSSS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

70 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

7.3.1. What the User Must Provide

The user must provide the following inputs to the CTS:
* The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.
* The project’s header files (C/C++) or spec files (Ada).
* The project’s USM.

* The project’s toolchain file.

7.3.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.
2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite

directory from the command line.

File Run Help ‘A

ﬁgr Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS5S_Genera...

thomejdi/ Des ktop/FACEConformanceT...

@ Run Conformance Test

".?. Create a Project Configuration
E Create a Toolchain Configuration

e Preferences

f‘ Documentation

Figure 51. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

"NAVAIR Public Release 2021-434" 71
Distribution Statement A -"Approved for public release; distribution is unlimited"

=

Create New Project - FACE Conformance Test Suite 3.0r0-SNAPSHOT x

Create a New Project Configuration

Project Name: [P

Project Location: | /home/tstittleburg/CTSProjects

Ok Cancel

Figure 52. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

*CPP_PSSS.pcfg - Project Configuration x) el (x
File Run Help <« o

Project Configuration Builder

. General

General

Base Directory: /home/ctsfworkspace/conformancetestsuite2/samg
Data Model Segment: pss v

. . Language: Earar hd

Gold Standard Libraries

Profile: General =
Objects/Libraries Partition: POSIX ARINCES3 A

ARINCE53 Part 1 Version: 2010 A
Notes OpenGL: None E

Toolchain: of o) ftoolchains/CPP/C++_NonOSS_toolchi | - +
Project Info UoP Name: UoP2

Click the report icon to the right for detailed results...

(81

Figure 53. Project Configuration Builder General tab

6. Fill in all options on the General tab for
a. Base Directory
b. Select “PSS” as segment

c. The Language the candidate UoC was written in

72 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

d. The OSS profile the candidate UoC was intended
e. The partition type the UoC was intended
i. Enable POSIX multi process APIs if required

ii. If ARINC653 or POSIX ARINC653 was selected for partition type, select what ARINC653
version is required

f. If the UoC contains graphics API calls, select from the OpenGL dropdown
g. Add the targeted toolchain path
h. Set the UoP name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.

CPP_P5SSS General LCM.pcfg - Project Configuration v) (a) (x

File Run Help o oy

Project Configuration Builder

Data Model

General

Shared Data Model: Al /datamodels/model_3_1 .face
Data Model

UcoP Supplied Model: A Jdatamodels/model_3_1.face
Gold Standard Libraries

Entity Uniqueness Observable Uniqueness

Objects/Libraries UaP: UaP2 -

Associated Views:
Notes
PV1

T2
Project Info

m

Click the report icon to the right for detailed results...

Figure 54. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.

"NAVAIR Public Release 2021-434" 73
Distribution Statement A -"Approved for public release; distribution is unlimited"

9.

74

*CPP_PSSS_LCM.pcfg - Project Configuration x) el (x
File Run Help <« o

Project Configuration Builder

B H 4 H ® #®

Gold Standard Libraries
General

GSL Directory: | /home/cts/workspace/conformancetestsuite2/sample/projects/
Data Model
Gold Standard Libraries
Objects/Libraries

Notes

Project Info

Click the report icon to the right for detailed results... |_:|

Figure 55. Gold Standard Libraries tab

Select the Objects/Libraries tab to display the platform components options shown below. For
C/C++ projects, use the list boxes to add the include files and include paths (if applicable) for the
concrete interface implementations provided by the UoC. All 'include files' must exist in one of
the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.3.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Obj/Lib tab.

a. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

CPP_PSSS_General LCM.pcfg - Project Configuration v) (~) (x

File Run Help & ()

Project Configuration Builder

B L O | H M @ *
PSS
General
-
X
Data Model Include Paths: o
h
Gold Standard Libraries m
X
T
Objects/Libraries Include Files:
v
Notes

Project Info

® Provide Segment Objects/Libraries
ObjsiLibs: (7 pyild/stateful FACE_LCM UoPModelName T2 PV Statef.. l

Pl

=H | pbuild/Initializable_FACE_LCM_lInitializable_Initializablelnst...

X build/Configurable_FACE_LCM_Configurable_Configurablel...

A
build/Connectable_FACE_LCM_Connectable_Connectablel...

v
build/CSP_Injectable_FACE_TSS_CSP_CSP_Injectable_Injec...

Click the report icon to the right for detailed results... D

Figure 56. Include Paths and Files

10. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle
Management (LCM) Stateful interface is implemented, the datatypes are defined by the
architecture model selected.

"NAVAIR Public Release 2021-434" 75
Distribution Statement A -"Approved for public release; distribution is unlimited"

CPP_PSSS_General LCM.pcfg - Project Configuration v) (~) (x

File Run Help & ()

Project Configuration Builder

B & A ® #

BEE

General
Life Cycle Management Interfaces Implemented:

v LCM Initializable
Data Model v LCM Configurable
v LCM Connectable

Gold Standard Libraries V| LCM Stateful
Specify LCM Stateful Interface Provided by UoC (only for I0S/TSS)

Reported Type Name:
Objects/Libraries

Reported Type UoP Model Name:
Notes Request Type Name:

Reguest Type UoP Model Name:

Project Info
FACE Interfaces Used:

LCM Initializable
LCM Configurable
LCM Connectable
Configuration Services
v/ TSS Component State Persistance
Analog I/O Interface
ARINC429 /O Interface

Click the report icon to the right for detailed results... D

Figure 57. Life Cycle Management

11. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC “uses” a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

76 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

CPP_P555_General LCM.pcfg - Project Configuration ») () (x

File Run Help & i

Project Configuration Builder

B H 4B ® %

P55
General
FACE Interfaces Used:
LCM Initializable
LCM Configurable
LCM Connectable

Data Model

Gold Standard Libraries) . .
Configuration Services

v TSS Component State Persistance

Objects/Libraries Analog I/O Interface

ARINC429 |/O Interface
Notes ARINCE25 |/O Interface

Discrete I/O Interface
Project Info Generic /O Interface
12C I/O Interface
MIL-STD-1553 I/O Interface
Precision Synchro /O Interface
Synchro I/O Interface
Serial I/O Interface
Health and Fault Monitoring (HMFM) Interface

LCM Stateful Interfaces Used by UoC
v Uses LCM Stateful Interfaces

Reported: T2 (Data Model: UoPModelName) Reguest: PV1 (Data Mo

Click the report icon to the right for detailed results... D

Figure 58. FACE Interfaces Used

12. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life
Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

1. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype

"NAVAIR Public Release 2021-434" 77
Distribution Statement A -"Approved for public release; distribution is unlimited"

CPP_PS55_General_LCM.pcfg - Project Configuration ») () (x

File Run Help “ ‘A

Project Configuration Builder

B H 4 & ® #

PSS
General Serial IO Interface

Health and Fault Monitoring (HMFM) Interface

Data Model LCM Stateful Interfaces Used by UoC
v Uses LCM Stateful Interfaces

Gold Standard Libraries Reported: T2 (Data Model: UoPModelName) Request: PV1 (Data Mo
Objects/Libraries

Notes

Project Info
Remove Stateful Interface Used
Add New LCM Stateful Interface Used by UoC
Click the report icon to the right for detailed results... D

Figure 59. Life Cycle Management Interfaces Used

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

e

*C 0SS ARINC653.pcfg - Proje«
File Run Help

Project Configuration Builder

EI'HHLQ

enerate Gold Standard Libraries

General

Figure 60. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s ‘include/FACE’ subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of

78 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

CPP_P5SS5_General_LCM.pcfg - Project Configuration v) (~) (x

File Run Help < Y

Project Configuration Builder

PS5
General | .
® Provide Segment Objects/Libraries
Data Model Objs/Libs: (0L build/TypedTS_Injectable_FACE_TSS_UoPModelName_...
ZH build/TypedTS_Injectable_FACE_TSS_UoPModelName_...
. . b 4 build/Base_Injectable_FACE_TSS_Base_Injectable_Inje...
Gold Standard Libraries A
build/Stateful_Injectable_FACE_LCM_UoPModelName_...
¥ | build/PSSS_ LCM UoP.o I
Objects/Libraries
Notes Generate Objects/Libraries from source code
Project Info
Click the report icon to the right for detailed results... |_-J

Figure 61. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a “Factory Function.”

Note: Once the user creates their Factory Function declaration and the user runs the conformance
test, a test file declares a pointer to a FACE interface. Then, the CTS instantiates it by calling the
Factory Function implementation that the user provided. Once instantiation is complete, it calls
each method defined in the interface to ensure complete adherence to the interface.

"NAVAIR Public Release 2021-434" 79
Distribution Statement A -"Approved for public release; distribution is unlimited"

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
“CTS_Factory_Functions” in the generated subfolder 'build/GSL/include’, which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE ‘abstract’ class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the "..." button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select E¥ to verify that the Project Configuration File is valid.

2. Clickthe ® button atthe top ofthe screen to test the segment. (This may take a few minutes). The
results will be written to a PDF file. The directory of the results file will be in the directory of the
project configuration file. This directory path will be listed in the "Output File Location" of the
Conformance Test Results page.

7.4. Testing a Transport Services Segment (TSS) UoC

The following subsections details instructions to successfully generate a valid project configuration
file for a TSS UoC and how to run a test using the Conformance Test Suite. More information about
each projection configuration option can be found in the subsections of Project Configuration Files.

80 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

7.4.1. What the User Must Provide

The user must provide the following inputs to the CTS:
* The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.
* The project’s header files (C/C++) or spec files (Ada).
* The project’s USM.

* The project’s toolchain file.

7.4.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.
2. Start the conformance test suite by running the run_CTS_GUI.py script in the main test suite

directory from the command line.

File Run Help ‘A

ﬁgr Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS5S_Genera...

thomejdi/ Des ktop/FACEConformanceT...

@ Run Conformance Test

".?. Create a Project Configuration
E Create a Toolchain Configuration

e Preferences

f‘ Documentation

Figure 62. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

"NAVAIR Public Release 2021-434" 81
Distribution Statement A -"Approved for public release; distribution is unlimited"

=

Create New Project - FACE Conformance Test Suite 3.0r0-SNAPSHOT x|

Create a New Project Configuration

Project Name: [P

Project Location: | /home/tstittleburg/CTSProjects

Ok Cancel

Figure 63. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

*C_TSS_General_TS.pcfg - Project Configuration ») () (x
File Run Help < o

Project Configuration Builder

General
General
Base Directory: /home/cts/Desktop/LocalRepo/sample/projects/C/T
Lz ol Segment: TSS A
Language: C -
Gold Standard Libraries
Profile: General E
Objects/Libraries Partition: POSIX A
POSIX Multi Process: Use Multi Process APls
Notes ARINCE53 Part 1 Version:
OpenGL: None =
Project Info)
Toolchain: fof) froolchains/C/General /C_NonOSS_G || - +
UoP Name: UOPName
Click the report icon to the right for detailed results... D

Figure 64. Project Configuration Builder General tab

6. Fill in all options on the General tab for
a. Base Directory
b. Select “TSS” as segment
c. The Language the candidate UoC was written in
d. The OSS profile the candidate UoC was intended
e. The partition type the UoC was intended

i. Enable POSIX multi process APIs if required

82 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

ii. If ARINC653 or POSIX ARINC653 was selected for partition type, select what ARINC653
version is required

f. If the UoC contains graphics API calls, select from the OpenGL dropdown
g. Add the targeted toolchain path
h. Set the UoP name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the
General tab.

C_TSS_Safetyext TS.pcfg - Project Configuration Al (x

File Run Help « n

Project Configuration Builder

Data Model
General
Shared Data Model: oSl fdatamodels/model_3_1.face
Data Model
UoP Supplied Model: oS fdid fdatamodels/model_3_1.face

Gold Standard Libraries

Entity Uniqueness Observable Uniqueness
Objects/Libraries UoP: Associated
v UoPl)) PV1
Views:
v UoP2 il
Notes T2
PV1
Project Info
Click the report icon to the right for detailed results... D

Figure 65. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.

"NAVAIR Public Release 2021-434" 83
Distribution Statement A -"Approved for public release; distribution is unlimited"

0.

84

*CPP_TSS_TPM.pcfg - Project Configuration x) el (x
File Run Help <« o

Project Configuration Builder

B H 4 H ® #®

Gold Standard Libraries
General

GSL Directory: | /home/cts/workspace/conformancetestsuite/sample/projects/C
Data Model
Gold Standard Libraries
Objects/Libraries

Notes

Project Info

Click the report icon to the right for detailed results... |_:|

Figure 66. Gold Standard Libraries tab

Select the Objects/Libraries tab to display the transport components options shown below. For
C/C++ projects, use the list boxes to add the include files and include paths (if applicable) for the
concrete interface implementations provided by the UoC. All 'include files' must exist in one of
the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.4.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Files Obj/Lib tab.

a. Select the TSS UoP Type.
b. Select the Intra-segment APIs if used.

c. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

*C_TSS_TS.pcfg - Project Configuration x) el (x
File Run Help <« o
Project Configuration Builder
| 188
General
Type: TS Interface TSS UoP -
Data Model ; .
Intra-segment APIs: Type Abstraction: J Uses
Gold Standard Libraries Transport Protocol Module: « Uses
Extended: Jses | | Implements
Objects/Libraries TPM Serialize: Jses | Implements
-
X
MNotes -
Include Paths:
v
Project Info
4
X
Include Files: ~
v
Click the report icon to the right for detailed results... L'_]

Figure 67. Include Paths and Files

10. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle
Management (LCM) Stateful interface is implemented, enter the datamodel name and datatype
name of the reported and request datatype.

*C_TSS_Safetyext TS.pcfg - Project Configuration v) (a) (x

File Run Help = A

Project Configuration Builder

B H 42 ® %

T55
General Life Cycle Management Interfaces Implemented:

v/ LCM Initializable
v/ LCM Configurable

Data Model
v LCM Connectable
LCM Stateful
Gold Standard Libraries Specify LCM Stateful Interface Provided by UoC (only for I0S/TSS)

Reported Type Name:

Objects/Libraries Reported Type UoP Model Name:

Request Type Name:

Notes
Request Type UoP Model Name:
Project Info FACE Interfaces Used:
LCM Initializable
LCM Configurable
LCM Connectable
Click the report icon to the right for detailed results... D

Figure 68. Life Cycle Management

"NAVAIR Public Release 2021-434" 85
Distribution Statement A -"Approved for public release; distribution is unlimited"

11. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC “uses” a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

C_TSS Safetyext TS.pcfg - Project Configuration v) () (x

File Run Help < Y
Project Configuration Builder

B H M4 & ® %

T55

General
FACE Interfaces Used:

LCM Initializable
Data Model LCM Configurable
LCM Connectable
Gold Standard Libraries Configuration Services

TSS Component State Persistance

Objects/Libraries

Notes

Project Info
Health and Fault Monitoring (HMFM) Interface
LCM Stateful Interfaces Used by UoC
v Uses LCM Stateful Interfaces
Reported: PV1 (Data Model: UoPModelName) Request: T2 (Data Mo
Click the report icon to the right for detailed results... D

Figure 69. FACE Interfaces Used

12. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful
interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life
Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

1. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype

86 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_IOSS_Analog.pcfg - Project Configuration) (2) (x
File Run Help <~ =

Project Configuration Builder

B H 4 & ® %

105

General LCM Stateful Interfaces Used by UoC

Uses LCM Stateful Interfaces

Data Model

Gold Standard Libraries

Objects/Libraries

Notes

. Remove Stateful Interface Used
Project Info

Add New LCM Stateful Interface Used by UoC

Reported Type Name:

Reported Type Data Model Name:
Reguest Type Name:

Reguest Type Data Model Name:

Click the report icon to the right for detailed results... |;|

Figure 70. Life Cycle Management Interfaces Used

Note: For TSS UoCs implementing either the TPM or CSP capabilities and they need to access device
drivers, please ensure that the device driver code is included/added to the compiler specific code

section within the toolchain configuration as calling driver code from TSS TPM or CSPs will need to
be inspected.

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

-

*C 0SS ARINC653.pcfg - Projet
File Run Help

Project Configuration Builder

E’Hﬂﬁg

enerate Gold Standard Libraries

General
Figure 71. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s ‘include/FACE’ subdirectory. Examine the contents of this

"NAVAIR Public Release 2021-434" 87
Distribution Statement A -"Approved for public release; distribution is unlimited"

directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

*CPP_IOSS_Analog.pcfg - Project Configuration ¥ (a) (x
File Run Help L o
Project Configuration Builder
105
General I
® Provide Segment Objects/Libraries
Data Model Objs/Libs: (2| puild/Analog_FACE_IOSS_Analog_lO_Service_impl.o
&
. . X
Gold Standard Libraries -
v
Objects/Libraries
SOtes Generate Objects/Libraries from source code
Project Info
Click the report icon to the right for detailed results... |_-J

Figure 72. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a “Factory Function.”

Note: Once the user creates their Factory Function declaration and the user runs the conformance
test, a test file declares a pointer to a FACE interface. Then, the CTS instantiates it by calling the

88 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Factory Function implementation that the user provided. Once instantiation is complete, it calls
each method defined in the interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the wuser must find a generated header/spec file named,
“CTS_Factory_Functions” in the generated subfolder 'build/GSL/include’, which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE ‘abstract’ class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the "..." button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select E¥ to verify that the Project Configuration File is valid.

2. Clickthe ® buttonatthetop ofthe screen to testthe segment. (This may take a few minutes). The
results will be written to a PDF file. The directory of the results file will be in the directory of the
project configuration file. This directory path will be listed in the "Output File Location" of the
Conformance Test Results page.

7.5. Testing an I/O Services Segment (I0S) UoC

The following subsections details instructions to successfully generate a valid project configuration
file for an I0S UoC and how to run a test using the Conformance Test Suite. More information about

"NAVAIR Public Release 2021-434" 89
Distribution Statement A -"Approved for public release; distribution is unlimited"

each projection configuration option can be found in the subsections of Project Configuration Files.

7.5.1. What the User Must Provide
The user must provide the following inputs to the CTS:

* The project’s object files (C/C++/Ada) or class/jar files (Java). Alternatively, source files can be
provided, and the CTS will build them into object or class files using the toolchain configuration.

* The project’s header files (C/C++) or spec files (Ada).

* The project’s USM.

* The project’s toolchain file.

7.5.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.
2. Start the conformance test suite by running the run_CTS_GUIpy script in the main test suite

directory from the command line.

File Run Help Y

ﬁgf Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS55_Genera...

thomejdi/ Des ktop/FACEConformanceT...

@ Run Conformance Test
".?. Create a Project Configuration
E Create a Toolchain Configuration

9 Preferences

f‘ Documentation

Figure 73. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

90 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

=

Create New Project - FACE Conformance Test Suite 3.0r0-SNAPSHOT x

Create a New Project Configuration

Project Name: [P

Project Location: | /home/tstittleburg/CTSProjects

Ok Cancel

Figure 74. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

*CPP_IOS5_Analog.pcfg - Project Configuration x) (&) (%
File Run Help <« o

Project Configuration Builder

B H 4 ® *

General
General

Base Directory: fhome/cts/workspace/conformancetestsuite2/sample/projects/CPP/IOS

Data Model

Segment: 105 -
. . Language: C++ -
Gold Standard Libraries
Profile: General .
Objects/Libraries Partition: POSIX

ARINCE53 Part 1 Version:

Notes OpenGL: None v
Toolchain: At ftoolchains/CPP/C++_NonQSS_toolchain_nodelete.tcfg +
Project Info UoP Name: UOPName
Click the report icon to the right for detailed results... D

Figure 75. Project Configuration Builder General tab

6. Fill in all options on the General tab for
a. Base Directory
b. Select “IOS” as segment
c. The Language the candidate UoC was written in
d. The OSS profile the candidate UoC was intended
e. The partition type the UoC was intended

i. Enable POSIX multi process APIs if required

"NAVAIR Public Release 2021-434" 91
Distribution Statement A -"Approved for public release; distribution is unlimited"

ii. If ARINC653 or POSIX ARINC653 was selected for partition type, select what ARINC653
version is required

f. If the UoC contains graphics API calls, select from the OpenGL dropdown
g. Add the targeted toolchain path
h. Set the UoP name

7. Select the Data Model tab to display the data model information below.

a. Set the path to the SDM and USM. This directory is relative to the base directory set in the

General tab.
*CPP_l0S5_Safetybase_Analog.pcfg - Project Configuration v) (~) (x
File Run Help <« [
Project Configuration Builder
Data Model
General
Shared Data Model:
Data Model
UoP Supplied Model:
Gold Standard Libraries
Entity Uniqueness Observable Unigueness
Objects/Libraries
Notes
Project Info
Click the report icon to the right for detailed results... D

Figure 76. Data Model tab

8. Select the Gold Standard Libraries tab to display the options below.

a. Set the directory where the gold standard libraries will be generated and stored for the test.

NOTE This directory is relative to the base directory set in the General tab.

92 "NAVAIR Public Release 2021-434"

Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_IOSS_Analog.pcfg - Project Configuration) (2) (x
File Run Help <~ =

Project Configuration Builder

B H 4 & ® %

Gold Standard Libraries
General

GSL Directory: build/GSL
Data Model
Gold Standard Libraries [}
Objects/Libraries

Notes

Project Info

Click the report icon to the right for detailed results... |_:|

Figure 77. Gold Standard Libraries tab

9. Select the Objects/Libraries tab to display the IOS components options shown below. For C/C++
projects, use the list boxes to add the include files and include paths (if applicable) for the
concrete interface implementations provided by the UoC. All 'include files' must exist in one of
the 'include paths'. Any files included by the concrete implementation of Factory Functions
must exist in one of the Include Paths specified. More details about Factory Functions are found
in Section 7.5.2.3. More information about all options in the Object/Libraries tab are detailed in
Project Configuration Obj/Lib tab.

a. If the user is providing object files for their UoC, before providing the user’s object or library
files, they must build them against the Gold Standard Library headers. The CTS will generate
the FACE headers for any interface the UoC uses so that the user can build their source code
against those. Skip selecting the UoC’s object files until the user has generated the GSLs and
FACE headers and has built their UoC code against these headers. Therefore, skip the section
on selecting object files for now.

"NAVAIR Public Release 2021-434" 93
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_lOSS_General_Analog.pcfg - Project Configuration ») () (x
File Run Help “~ e

Project Configuration Builder

B H A ® %

. 105
General
Interfaces Defined: Analog /O Interface

Data Model ARINC429 /O Interface

ARINCE25 /O Interface

. . Discrete I/O Interface

Gold Standard Libraries ,

Generic /O Interface

12C I/O Interface

Objects/Libraries MIL-STD-1553 /O Interface
Precision Synchro |/O Interface
Notes Synchro I/O Interface
Serial 1/O Interface
Project Info +
X
Include Paths: ~
v
-
X
Include Files: ~
v [
Click the report icon to the right for detailed results... L'_]

Figure 78. Include Paths and Files

10. Scroll down and select any of the FACE Interfaces the UoC implements. If the Life Cycle

94

Management (LCM) Stateful interface is implemented, enter the datamodel name and datatype
name of the reported and request datatype.

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_l0S5_General_Analog.pcfg - Project Configuration Al (x

File Run Help <« i

Project Configuration Builder

B H 4 & ® %

105

Generel Life Cycle Management Interfaces Implemented:

LCM Initializable
Data Model LCM Configurable
LCM Connectable
LCM Stateful
Specify LCM Stateful Interface Provided by UoC (only for IOS/TSS)

Gold Standard Libraries

Reported Type Name:
Objects/Libraries
Reported Type UoP Model Name:

Notes Request Type Name:

Request Type UoP Model Name:

Project Info
FACE Interfaces Used:

LCM Initializable
LCM Configurable

Click the report icon to the right for detailed results... D

Figure 79. Life Cycle Management

11. Scroll down and select the FACE Interfaces that are used by the UoC. The UoC must provide an
Injectable interface for each FACE Interface it uses. By specifying the candidate UoC “uses” a
given interface, it indicates that it implements an Injectable Interface for that interface, and this
will be tested by the CTS.

"NAVAIR Public Release 2021-434" 95
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_lOSS_General_Analog.pcfg - Project Configuration ») () (x
File Run Help « e

Project Configuration Builder

B d 4 E ® #®

105

General FACE Interfaces Used:

LCM Initializable

Data Model LCM Configurable
LCM Connectable
Gold Standard Libraries Configuration Services

Objects/Libraries

Notes

Project Info

Health and Fault Monitoring (HMFM) Interface

LCM Stateful Interfaces Used by UoC
Uses LCM Stateful Interfaces

Click the report icon to the right for detailed results... |_'J

Figure 80. FACE Interfaces Used

12. Scroll down and enter the information regarding any FACE Life Cycle Management Stateful

96

interfaces that are used by the UoC. If none are used, leave this section blank. Multiple Life

Cycle Management Stateful interfaces may be used by a UoC. The required information for each
Stateful interface are:

i. the data model and datatype name of the reported datatype

ii. the data model and datatype name of the request datatype

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_IOSS_Analog.pcfg - Project Configuration) (2) (x
File Run Help <~ =

Project Configuration Builder

B H 4 & ® %

105

General LCM Stateful Interfaces Used by UoC

Uses LCM Stateful Interfaces

Data Model

Gold Standard Libraries

Objects/Libraries

Notes

. Remove Stateful Interface Used
Project Info

Add New LCM Stateful Interface Used by UoC

Reported Type Name:

Reported Type Data Model Name:
Reguest Type Name:

Reguest Type Data Model Name:

Click the report icon to the right for detailed results... |;|

Figure 81. Life Cycle Management Interfaces Used

Generating the Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any
interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

-

*C 0SS ARINC653.pcfg - Projet
File Run Help

Project Configuration Builder

E’Hﬂﬁg

enerate Gold Standard Libraries

General
Figure 82. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s ‘include/FACE’ subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user

"NAVAIR Public Release 2021-434" 97
Distribution Statement A -"Approved for public release; distribution is unlimited"

will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
(Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.)

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

*CPP_IOS5_Analog.pcfg - Project Configuration x) (o) (x
File Run Help e o
Project Configuration Builder
105
General I
& Provide Segment Objects/Libraries
Data Model Objs/Libs: (L [puildjAnalog_FACE_IOSS_Analog_lO_Service_impl.o
2
. . X
Gold Standard Libraries A
v
Objects/Libraries
LS Generate Objects/Libraries from source code
Project Info
Click the report icon to the right for detailed results... |_-J

Figure 83. The Project Configuration Builder, with the Objects/Libraries tab selected.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code against the FACE CTS, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a “Factory Function.”

Note: Once the user creates their Factory Function declaration and the user runs the conformance
test, a test file declares a pointer to a FACE interface. Then, the CTS instantiates it by calling the
Factory Function implementation that the user provided. Once instantiation is complete, it calls
each method defined in the interface to ensure complete adherence to the interface.

98 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Generation

To determine which factory functions are necessary, the user must generate the GSL for their
project. After generation, the user must find a generated header/spec file named,
“CTS_Factory_Functions” in the generated subfolder 'build/GSL/include’, which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file (CTS_Factory_Functions .h or .hpp) will contain the declarations of all expected
factory functions that the CTS requires for testing the user’s UoC. The implementation for each
function must instantiate the corresponding concrete class and return a pointer to that object (the
return type will be a pointer to the FACE ‘abstract’ class). Returning a null pointer is not acceptable.
This source file must be provided with the user’s project and will be reviewed to ensure it
instantiates the user’s UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C++/Ada only)", use the "..." button to the right to browse for the source file.
Any header files included by the source file must exist in one of the Include Paths specified
above.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

Validating and Testing a Project

1. Select E¥ to verify that the Project Configuration File is valid.

2. Clickthe ® button atthe top ofthe screen to test the segment. (This may take a few minutes). The
results will be written to a PDF file. The directory of the results file will be in the directory of the
project configuration file. This directory path will be listed in the "Output File Location" of the
Conformance Test Results page.

7.6. Testing an Operating System Segment (OSS) UoC

The following subsections details instructions to successfully generate a valid project configuration
file for an OSS UoC and how to run a test using the Conformance Test Suite. More information
about each projection configuration option can be found in Project Configuration Files.

"NAVAIR Public Release 2021-434" 99
Distribution Statement A -"Approved for public release; distribution is unlimited"

7.6.1. What the User Must Provide
The user must provide the following inputs to the CTS:

* The OS’s include path.
» The target OS object files.

7.6.2. Test Procedures

Providing Project Context

1. Successfully install the CTS.
2. Start the conformance test suite by running the run_CTS_GUIpy script in the main test suite

directory from the command line.

File Run Help N

ﬁgr Welcome to FACE Conformance Test Suite

Supporting FACE Technical Standard Edition 3.0

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS55_Genera...

thomejdi/ Des ktop/FACEConformanceT...

@ Run Conformance Test

".?. Create a Project Configuration
E Create a Toolchain Configuration

e Preferences

ﬂ Documentation

Figure 84. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

100 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

=

Create New Project - FACE Conformance Test Suite 3.0r0-SNAPSHOT x

Create a New Project Configuration

Project Name: [P

Project Location: | /home/tstittleburg/CTSProjects

Ok Cancel

Figure 85. Create New Project Configuration

4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.

5. Navigate to the project configuration builder.

*C_0SS_ARINC653.pcfg - Project Configuration ») () (x

File Run Help <« o

Project Configuration Builder

. General

General

Base Directory: /home/cts/Desktop/LocalRepo/sample/projects/C/O
DRI [ferasl Segment: 0ss A

Language: C -
Gold Standard Libraries

Profile: General E
Objects/Libraries Partition: ARINCE53 A

POSIX Multi Process: Jse Mu

Notes ARINCE53 Part 1 Version: 2010 -
OpenGL: OpenGL SC APl & OpenGL SC 2.0 API & OpenGL ES 2.0 API
Project Info)
Toolchain: ff) Sroolchains/C/General /C_0SS_Gener | - +
UoP Name:
Click the report icon to the right for detailed results... L'_]

Figure 86. Project Configuration General tab

6. Fill in all options on the General tab.

7. Select the Gold Standard Libraries tab to display the options below.

"NAVAIR Public Release 2021-434" 101
Distribution Statement A -"Approved for public release; distribution is unlimited"

*C_0SS_ARINC653.pcfg - Project Configuration x) el (x
File Run Help <« o

Project Configuration Builder

B H 4 H ® #®

Gold Standard Libraries
General

GSL Directory: | /home/cts/workspace/conformancetestsuite2/sample/projects/
Data Model
Gold Standard Libraries
Objects/Libraries

Notes

Project Info

Click the report icon to the right for detailed results... |_:|

Figure 87. The Project Configuration Builder with the Gold Standard Libraries tab selected.

8. Set the directory where the GSL will be generated and stored for the test. This directory is
relative to the base directory set in the General tab.

9. Select the Objects/Libraries tab.

102

a.

b.

The user must check each OS API they wish to test. Notice their options are now editable.

For each OS API under test, place any specific compiler flags that are needed. General
compiler flags can be specified under the Build tab. These flags should be unique to the OS
API under test.

For each OS API under test, place any specific linker flags that are needed. General linker
flags can be specified under the Build tab. These flags should be unique to the OS API under
test.

For each OS API under test, enter any directories that should be in the include path for each
OS API interface.

For each OS API under test, enter the full pathnames to any header files associated with the
interface. These files must be in one of the directories specified under 'compiler paths'
(include paths). Any files included by the Factory Functions (see next few steps) must exist in
one of the Include Paths specified.

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

*C_0SS_ARINC653.pcfg - Project Configuration ») &) X
File Run Help <« [

Project Configuration Builder

B H A e ® %

0ss
General

‘ ARINC 653 | C std Library | POSIX | HMFM | Configuration | LCM | Khronos EGL 1.4 | OpenGL SC | OpenGL E ‘v

Data Model
v Arinc 653
Gold Standard Libraries Compiler Flags: b
Linker Flags:
Objects/Libraries ObjsiLibs: (3]..1./ouild_GSLyarinces 3GeneralGoldLib.a
[
X
Notes A
v
Project Info
Compiler Paths: [/ /. /. jgoldStandard Libraries/C/src/OSS/ARINC-653/general
x
~
v
Linker Paths: g
x
~
v
+ .f.J...0 . fgoldStandard Libraries/C/src/OSS/ARINC-653/general/ ARINC653.h
X
Include Files: ~
v

Click the report icon to the right for detailed results...

m

Figure 88. The Project Configuration Builder with the Objects/Libraries tab selected.

Table 13. OSS Tests based on language and profile.

Languag ARINC CStdLib C++Std HMFM Java Khronos OpenGL OpenGL POSIX Config LCM

e/ Profile 653 Lib Group ES 2.0 SC2.0 uration
EGL 1.4
C/GP X X X X X X X
C/SB, X X X X X X
C/SE
C/s X X X X X X
C++/All X X X X
Ada/All X X X X
Java/GP X X X

“Language/Profile” column acronyms in Table 13 are defined as:

* GP: General Purpose

SB: Safety Base

SE: Safety Extended
 S: Security
All: All profiles

Generating Gold Standard Libraries

In order to build the user’s source code, the user will need FACE interface headers for any

"NAVAIR Public Release 2021-434" 103
Distribution Statement A -"Approved for public release; distribution is unlimited"

interfaces the UoC uses. For example, for a PCS the user will need any TSS headers the UoC code
uses, as standardized in the FACE Technical Standard. The CTS will generate these headers for the
user. Click the Generate GSLs Button in the upper left corner of the window as shown below to
generate the FACE headers as well as the GSL.

-

*C 0SS ARINC653.pcfg - Proje«

File Run Help

Project Configuration Builder

E’Hﬂlgg

enerate Gold Standard Libraries

General

Figure 89. The GSL generation button.

If providing objects for the user’s UoC, the user may now build their objects using the FACE headers
generated into the GSL directory’s ‘include/FACE’ subdirectory. Examine the contents of this
directory to see the standardized header names of all non-OSS FACE Interfaces. Note that for C/C++
all FACE headers should be included with the relative path starting from the FACE directory, for
example: "FACE/IOSS/Analog.hpp" The include directories to be used are described in a generated
README file in the GSL directory. OSS include directories are listed and are in specific subfolders of
the CTS folder goldStandardLibraries. When the user builds their object code for a UoC, the user
will need to include these subfolders and include any FACE headers as "FACE/[name of header file]".
Note that the headers in this subdirectory are deleted each time the test is run, so do not store any
project files in this directory.

The GSL libraries will be generated into the GSL Directory. The user may wish to use the GSLs
during development to check that their code builds against them, but there is no need to include
them in their CTS project. The CTS will rebuild the appropriate GSLs when the user runs the
conformance test and links them as part of the test.

In the “Provide Segment Objects/Libraries” section of the Objects/Libraries tab, the user must enter
the full pathnames of the project’s object and/or library files. The user may add each object file. The
user may also choose the directory where object files are located. All object files in the directory
specified as well as object files in subdirectories will be chosen. A combination of directories and
object/library files may be specified.

Factory Functions

FACE Interfaces, including Injectable Interfaces, are empty declarations. In order to properly test
the user’s code for FACE Conformance, the user must provide a file that contains a concrete
implementation for each interface needed for the UoC provided. This is called a “Factory Function.”

Once the user creates their Factory Function declaration and the user runs conformance test within
the CTS, a test file declares a pointer to a FACE interface. Then, the CTS instantiates it by calling the
Factory Function implementation that the user provided. Once that is complete, it calls the methods

104 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

defined in the interface to ensure complete adherence to the interface.

Generation

To determine which factory functions are necessary, the user must generate the GSLfor their
project. After generation, the wuser must find a generated header/spec file named,
“CTS_Factory_Functions” in the generated subfolder 'build/GSL/include’, which will contain
required interfaces.

Providing a Factory Function Implementation

The user must take note of the “CTS_Factory_Functions” file that was generated by the GSLs. The
user must provide a file that implements each of these functions. The following paragraphs detail
what the user must do per each language the user’s UoC implements.

For C/C++, this file will contain the declarations of all expected factory functions that the CTS
requires for testing the user’s UoC. The user must provide a source file that implements each of
these functions. The implementation for each function must instantiate the corresponding concrete
class and return a pointer to that object (the return type will be a pointer to the FACE base class).
Returning a null pointer is not acceptable. This source file must be provided with the user’s project
and will be reviewed to ensure it instantiates the UoC’s concrete class for that interface.

For Ada, this will generate a spec file (.ads) cts_factory_functions.ads which has the procedures the
user must implement in the source file. The source file for Ada must be named
"cts_factory_functions.adb" and implement each of these procedures, returning a concrete version
of each type as an access type. In the text field labeled "Source file with factory functions for
interfaces provided (C/C/Ada only)", use the '..." button to the right to browse for the source file. *Any
header files included by the source file must exist in one of the Include Paths specified above.* An
example for a C project is shown below.

For Java, a source file named CTS_Factory_Functions.java will be generated in the factory/ subfolder
(package subfolder). The user must fill in the implementation of each function, add any imports,
and add this to the user’s project in the CTS in this file field. Note that this file will NOT be
overwritten so if the interfaces the UoC uses have changed, the user must delete their file in order
to regenerate a new one with the new set of functions to implement.

"NAVAIR Public Release 2021-434" 105
Distribution Statement A -"Approved for public release; distribution is unlimited"

File Run Help

B H A e

General

Data Model

Gold Standard Libraries
Objects/Libraries
Notes

Project Info

*CPP_0S55_Config LCM.pcfg - Project Configuration ») &) X

Project Configuration Builder

0ss

‘ C++ Std Library | HMFM

v Configuration

Note: Ensure the toolchain selected is intended for an 0SS Configuration Services UoC

Compiler Flags:
Linker Flags:

Objs/Libs:

Compiler Paths:

Linker Paths:

Include Files:

Click the report icon to the right for detailed results...

Configuration

Lcm ‘

build/Configuration_FACE_Configuration_impl.o
build/Initializable_FACE_LCM_lnitializable_Initializablelnstance_impl.o

<P xR

<rx+

¢rx+

¢rx+

Figure 90. The Project Configuration Builder with the Objects/Library tab selected, within the Configuration

Validating and Testing a Project

1.

subtab.

Select EY to verify that the Project Configuration File is valid.

2. Clickthe ® button atthe top ofthe screen to test the segment. (This may take a few minutes). The
results will be written to a PDF file. The directory of the results file will be in the directory of the
project configuration file. This directory path will be listed in the "Output File Location" of the
Conformance Test Results page.

3. The result will be pass or fail if the OS supplies the necessary calls based on the profile.

7.7. Testing a Data Model

The following sections detail how to test a USM with the conformance test suite.

7.7.1. What the User Must Provide

The user must provide the following inputs to the CTS:

e The UoC data model file.

7.7.2. Test Procedures

1. Successfully install the CTS.

106

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

2. Start the conformance test suite by running the run_CTS_GUIpy script in the main test suite
directory from the command line.

File Run Help A

— Welcome to FACE Conformance Test Suite
Supporting FACE Technical Standard Edition 3.0

f

Future Aithorne Copobility Emvinament

Recent Projects Quick Start

CPP_PS55_Genera...

thomejdi/ Des ktop/FACEConformanceT...

@ Run Conformance Test

a0 c

[_.h reate a Project Configuration
E Create a Toolchain Configuration

e Preferences

% Documentation

Figure 91. Conformance Test Suite main menu

3. Import or create a new Project Configuration file by clicking "Create a Project Configuration".

Create New Project - FACE Conformance Test Suite 3.0r0-SNAPSHOT x|

Create a New Project Configuration

Project Name: [P

Project Location: | /home/ftstittleburg/CTSProjects

Ok Cancel

Figure 92. Create New Project Configuration
4. Fill in Project Name and Project Location then press Ok to launch the project configuration
builder.
5. Navigate to the project configuration builder.

6. Assure that the PCS/PSS/TSS is selected in the Segment dropdown of the General tab of the
Project Configuration Builder.

"NAVAIR Public Release 2021-434" 107
Distribution Statement A -"Approved for public release; distribution is unlimited"

*CPP_PCS_General.pcfg - Project Configuration ») () (x
File Run Help o

Project Configuration Builder

General
General
Base Directory: /home/cts/Desktop/LocalRepo/sample/projects/CPF
Lz ol Segment: PCS A
Language: C++ A
Gold Standard Libraries
Profile: General E
Objects/Libraries Partition: POSIX ARINCES3 v
POSIX Multi Process: Use Multi Process APIs
Notes ARINCE53 Part 1 Version: 2010 -
OpenGL: None A
Project Info)
Toolchain: .f.f) Sroolchains/CPP/General /[C++_NonC| | - +
UoP Name: UoP1
Click the report icon to the right for detailed results... D

Figure 93. Select PCS in the General Tab of the Project Configuration Builder

7. Select the Data Model tab to display the options below.

C_Tss_safetyext TS.pcfg - Project Configuration ») (~) (x

File Run Help <)

Project Configuration Builder

B W & ®
Data Model
General
Shared Data Model: oAt Jdatamodels/model_3_1.face
Data Model
UoP Supplied Model: oAt Jdatamodels/model_3_1.face
Gold Standard Libraries
Entity Unigueness Observable Unigueness
Objects/Libraries UoP: Associated
v | UcP1 ! . PVl
Views:
V| Uok2 L
Notes T2
PVl
Project Info
Click the report icon to the right for detailed results... D

Figure 94. Projection Configuration Builder Data Model tab
8. Select the shared data model (SDM) file associated with the segment under test.

9. Optionally select the conditional Object Constraint Language (OCL) constraints governing USM

108 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

and DSDM content.

o Select the Entity Uniqueness checkbox to define that the Entity is unique in a Conceptual
Data Model.

An Entity is unique if the set of its Characteristics is different from other
NOTE Entities' in terms of type, lowerBound, upperBound, and path (for
Participants).

o Select the Observable Uniqueness checkbox to define that the Entity does not compose the
same Observable more than once.

10. Select the UoP Supplied Model file associated with the segment under test. The test suite will
analyze the USM file, determining its validity and the Units of Portability found in the data
model file.

11. You may see data types associated with a UoP by clicking on the properties button.
12. Select the Units of Portability to use with the segment under test.

13. . *
Click the Test Data Model button.

14. The results will be written to a PDF file. The directory of the PDF results will be located in the
directory of the project configuration file. This directory path will be listed in the "Output File
Location" of the Conformance Test Results page.

7.8. Considerations for Testing an Ada Segment

Testing an Ada segment requires a small variation in the testing procedures from C and C++.
According to the standard, Ada Runtime Libraries are allowed, but if the Runtime Library is
packaged with the UoP, it must only use standard POSIX calls allowed according to the
profile/partition. If the Ada Runtime Libraries are part of the logical OSS, the use of the Ada
Runtime Libraries is verified via Inspection. In order to perform the link test for a packaged Ada
Runtime Library, you must include the Ada Runtime Library as part of your object/library files.
Additionally, you must compile the correct Gold Standard POSIX library to include as part of your
object library files. Since the test suite only supports compilation for one language at a time, you
must build the POSIX libraries before proceeding with Ada testing. This can be done by changing
your configuration from Ada to C, with the correct C compiler options, and generate the gold
standard libraries as described below. Once the libraries have been built, change the configuration
back to Ada, add the POSIX and Runtime libraries to your segment configuration and proceed with
the test. The test suite does generate Ada gold standard HMFM and ARINC 653 libraries.

7.9. Considerations for Testing a Java Segment

Testing a Java segment is very different from testing procedures from other languages. Since Java is
inspected directly instead of using a link test, there is not an option to generate gold libraries in
Java. For each test, Java Class Paths are used instead of object/library files. Include paths are not
used under Java tests. Under most systems, javac should be used as the compiler and jar should be
used as the archiver. The object file extension should be set to class in the project’s toolchain file.

"NAVAIR Public Release 2021-434" 109
Distribution Statement A -"Approved for public release; distribution is unlimited"

7.10. Viewing Test Suite Results

Once the run Conformance test button is pressed, the test suite will conduct the conformance test
and the results will be stored in PDF format. The file will be named
FACEConformanceTest_Name_of PCFG.pdf in the same directory as the pcfg file tested. All log files
generated in the test will also be found in the log directory, although the same log files are found
inside the PDF report. An example of a passable OSS component is given in the figure below:

File Run Help & 7
Run Segment Conformance Test [C OSS ARINC653.pcfg]

@ Run Conformance Test *

Recent Projects Conformance Test Results
C_055_ARINC653]

testr

C_TsS Safetybase CSP Conformance Test Result: PASSED

Ada_PCS_Safetybase
C_lOSS_Safetyext ARINC825

Test Complete! Result: PASSED

Summary

 General |
» Data Model Output File Location:

» Objects/Libraries /home/cts/Desktop/LocalRepo/sample/projects/C/OSS/General/ARINCE53/FACECon

formanceTest C_0SS5_ARINCE53. pdf
» Notes

Edit

Figure 95. A successful conformance test message.

The output of the CTS is written to a PDF report. The path of the PDF report will be displayed in the
Output File Location section.

110 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

|| B Q) el fex V] @E|jee® T ®
Inclex w M

-

Distribution ...
Table af Cont...

-

= Configuration...
Project Con...
Toolchain C...
Conformance...

= 5 Segment ...
= ARINC 653 ...

Futwe Aitborne Capahiliey Inn;nnrmnl
Conlormance Test Results

B B B G o b o e kg

b TIME =+ P...
PROCESS... 11 arincB53_033_LANG_C — PASSED

autogenarated 055 segmeni proyeo!

SAMPLIN... 21

Supporied FACE Technical Standand: 3.0

b QUEUING... 24
FACE Conk Tosl Suite Falsass: 100 SHAPSHOT

» BUFFER ... 28

The FACE Consortium will not curently accept any results from ihis relea s for
* BLACKBQ.. 31 ‘oenifying softwane components as FACE Comiormant
v SEMAPH... 35
b EVENT —... 38 Ereaiect: 20178001 1-4250
¥ ERROR =-+... 42
¢ FILE_5Y¥5... 43
b SAMPLIM... 57
] SAF'_PDF'.... 59
¢ NAME SE.. &4
v MEMORY ... 66 d

Figure 96. An example conformance test report.

The PDF report will detail toolchain and project configuration information along with source code
and/or log results associated with a test. Examples of the conformance test results can be seen
below.

|| [e_lef3E] | & [Q) E&CECﬂnfcrmnu[:T:'::u!rli‘l::Sg;_}OSS_LAMG-_C.de (g [S)] & &) &
Index ¥ K ARINC 653 Conformance Test —+ PASSED 1
Distribution ... 2 2 TIME —» PASSED
Table of Cont... 3 Testing TIMED WAIT conformance —» PASSED
= Configuration... 5§ Teat Code u
Project Con.. & conformancelnioraceTosts G /OS5 ARING-853 general TIME/APEX_TIMETIMED WAIT-tost.c
ToolchainC... & fincl
Conformance. .. g8
= 05 Segment ... &
= ARINC 653 8
= TIME = P... &8
Testing ... &
Testing ... &
Testing ... @
Testing ... & iy
» PROCESS.. 11 R o RPER IR TINED AT e
Testing ... 11
Testing ... 11
TE-sﬁn-q T f woeTe st o/ C/OSE /AN CHC -4
Testing ... 12 TampereibuL oL omEiCee ATl a1 3 AFLE TINE.TIRD LT tat
TESL-'"g o]3 Ld: warmarng: camrot find ety ayabol _start; defaulting to DOCOOCOODOACDOLED
Testing ... 13 Testing PERIODIG. WAIT conformance — PASSED
Testing ... 14 Teat Cade: cantormancertsraceT sabs/ 0SS AR NG-653 gnrersl TIME APEX_TIMEPERIOD
Testing ... 14 10_WAITSuita
Testing ... 15 clode TARIRE.C
Testing ... 15 ot
Testing ... 16
Testing ... 17
Testing ... 17
Testing ... 18 e e e i
= DA GTITIO 10 = al

Figure 97. A conformance test report scrolled to show report contents.

"NAVAIR Public Release 2021-434" 111
Distribution Statement A -"Approved for public release; distribution is unlimited"

The source of the non-conformance for a failed conformance test can be determined by examining
the test source code and resulting log files.

112 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Appendix A: References

1. The Open Group, "FACE TECHNICAL STANDARD, EDITION 3.0," 2020. [Online]. Available:
https://publications.opengroup.org/.

2. The Object Management Group, "Interface Definition Language,” March 2018. [Online].
Available: https://www.omg.org/spec/IDL/About-IDL/.

"NAVAIR Public Release 2021-434" 113
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://publications.opengroup.org/
https://www.omg.org/spec/IDL/About-IDL/

Appendix B: Using the CTS Via Command

Line Interface (CLI):

There are a number of options you can use when running the test suite start-up python script

(conformance_test.py).

If the test suite is launched with a configuration file listed, the test suite will run without the GUI
and save the results to the log directory listed in the configuration. The test suite will exit with a
return code of 0 if the segment(s) under test is conformant. It will return 1 if the segment(s) fails

conformance. This would be useful for automated testing of segments without user interaction.

Multiple configuration files can be passed to run by test suite, but it is important to have different
log directories in each configuration file, otherwise the test results would be overwritten by

subsequent tests.

The wuser must be in the root directory of their CTS installation. Then, point to the

face_conformance_app file:

cd face_conformance_app

python conformance_test.py [options] [config_filel] [config_file2] -

The usage options from the start-up script is shown below.

Table 14. Command Line Options

Switch
-h, --help

-p PORT_VALUE, --port=PORT_VALUE

-t, -time_stamp

-r REPORT_FILENAME, --report_filename=REPORT_FILENAME

-V, --version

-g --gold

-d --datamodel

114

Definition
Show this help message and exit.

Used in coordination with the CTS_GUI. Port used to
communicate with GUI supplied socket server.

Generates a time stamp to be added to the report filename
(assuring unique test run names).

Full path to the conformance test report PDF file. Default
filename is

FACEConformanceTest SEGMENT_PROJECT_NAME.pdf in the
same directory as the segment project file.

Verifies that a project configuration is valid for running
conformance tests. Return code is 0 if valid, and 1 if invalid.
Saves a log(PROJECT_CONFIG_NAME.ver_log) to the same
directory as the configuration file, and sends the results to
stdout.

Build GSLs for given project.

Test only data model.

"NAVAIR Public Release 2021-434"

Distribution Statement A -"Approved for public release; distribution is unlimited"

Appendix C: Glossary

Acronym
API
CR
CSsp
CTS
CVM
DSDM
FACE
GSL
GTRI
GUI
IDL
I0SS
ISIS
JDK
LCM
NAVAIR
OCL
0ss
PCS
PEO
PR
PSSS
SDM
TPM
TSS
UoC
UoP
USM

VA

Acronym Meaning

Application Programming Interface
Change Request

Component State Persistence
Conformance Test Suite
Conformance Verification Matrix
Domain-Specific Data Model
Future Airborne Capability Environment
Gold Standard Library

Georgia Tech Research Institute
Graphical User Interface
Interactive Data Language

I/O Services Segment

Institute for Software Integrated Systems
Java Development Kit

Life Cycle Management

Naval Air Systems Command
Object Constraint Language
Operating System Segment
Portable Components Segment
Program Executive Office

Problem Report

Platform Specific Services Segment
Shared Data Model

Transport Protocol Mediation
Transport Services Segment

Unit of Conformance

Unit of Portability

UoP Supplied Model

Verification Authorities

"NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

115

Appendix D: Constraints

POSIX and ARINC interface testing is performed on functions only. Data types and constants are not

tested comprehensively. A POSIX or ARINC conformance test should be used to fully test those
aspects.

116 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

Appendix E: Known Issues

NOTE

NOTE

Any issue found concerning the CTS should be reported to
https://ticketing.facesoftware.org.

The Configuration file structure has changed greatly from version 2.0 of the
conformance test suite and cannot be ported into 3.0 conformance tests.

Known Issues in this CTS Release

1.

The Java Conformance tool may throw an exception during Java Conformance testing on
Windows.

A Failed test result sometimes generates an “Inspection Required” overall test report result.
Some windows in the CTS GUI may not be sized correctly to fit all of their contents.

CTS Java sample projects and datamodel need to be updated. Sample projects that rely on the
sample project datamodel are disabled.

Sample C++ TypeAbstraction projects may not run successfully on Windows 10 when the CTS
is extracted to a long folder path due to path length and cmd.exe command character length
limits on Windows.

The IDL compiler (Ideal) may not produce source code for a USM containing valid element
names using numeric characters.

Microsoft Visual Studio C++ Runtime Library error encountered during compilation of Java
samples on Windows 10. The error seems to be a minor nuisance, as the sample projects
compile and verify as expected.

\Baseline_Testing\FACEConformanceTestSuite_3.1.1-pre\sample\toolchains\Java\Safetyex

Desktop\Baseline_Testing\FACEConformanceTestSuite_3.1.1-pre\sample\toolchains\Java\Safetyext\Jav

Microsoft Visual C++ Runtime Library
Generating Toolchain Files - Generating toolchain files from templates for p

or language: Java e Runtime Error!

Program: C:\Users\di\Desktop\Baseline_Testing\...

: Generating Toolchain Files - Generating toolchain files from templates for p

RE025
- pure virtual function call

- Generating toolchain files from templates for prg

enerating Toolchain Files - Generating toolchain files from templates for profile: Secu
ain files from templates for language: Java

Completed s Generating Toolchain Files - Generating toolchain files from templates for profile: Se
oolchain files from templates for language: Java

: Generating Toolchain Files - Generating toolchain files from templates for profile:

esting > FACEConformanceTestSuite 3.1.1-pre
Completed step (Result: SUCCESS): Generating Toolchain Files

______ Date modified
i1di 9/2021 4:55 PM
uilding GSLs 2/9/20
______ 2/11
e
Result: SUCCESS): Building GSLs 29,

49 testUtility.py: Starting step: Building UoCs

uilding UoCs - Building UoCs for Java ults

in COMPILER_SPECIFIC_DIR=gcc_windows_mingw_4.8 LANG=Java SEGM
=General PROFILE_GSL_FOLDER= a general_multi_proc PROFILE_LIBSTDCPP_GSL_FOLDER=general
fers\di\Desktop\Baseline_Tes FACEConforma i 1-pre\sample\projects\Java\PSSS\General \PSSS

Figure 98. Windows 10 Runtime Library Error Running Java Samples

"NAVAIR Public Release 2021-434" 117
Distribution Statement A -"Approved for public release; distribution is unlimited"

https://ticketing.facesoftware.org/

Appendix F: Acknowledgments

The test suite utilizes the following freely distributable software packages:

Software Package Details

stringtemplate 3.1 http://www.stringtemplate.org/
Author: Benjamin Niemann

License: BSD

Protocol Buffers - Google’s data interchange format http://code.google.com/p/protobuf/
Copyright 2008 Google Inc. All rights reserved.

License: New BSD

POSIX and ARINC interface testing is performed on functions only. Data types and constants are not
tested comprehensively. A POSIX or ARINC conformance test should be used to fully test those
aspects.

118 "NAVAIR Public Release 2021-434"
Distribution Statement A -"Approved for public release; distribution is unlimited"

http://www.stringtemplate.org/
http://code.google.com/p/protobuf/

	CONFORMANCE TEST SUITE USER MANUAL
	Table of Contents
	1. Introduction
	1.1. Context
	1.2. Tools Contained in the Test Suite
	1.2.1. Conformance Testing Workflow

	2. Installation
	2.1. Installation on Linux (CentOS 7/RHEL 7)
	2.1.1. User Prerequisites
	2.1.2. System Requirements
	2.1.3. Language-Specific Prerequisites
	GCC/G++ 4.8.5
	Python 2.7
	Protocol Buffers 2.6
	Java 8 JDK
	Ant 1.9.x
	Qt 5.2.1 (for Java only)

	2.1.4. Installation of CTS
	Environment Variables

	2.1.5. Running CTS
	Launching CTS

	2.2. Installation Variance for CentOS 8/RHEL 8
	2.3. Installation on Windows (Windows 10)
	2.3.1. User Prerequisites
	2.3.2. System Requirements
	2.3.3. Language-specific Prerequisites
	2.3.4. Detailed Instructions for Installing Prerequisites
	Python 2.7
	Java JDK 8
	MSYS2 (for C/C++/Ada samples only)
	Ant 1.9.x
	Qt 5.2.1 (for Java only)
	Enable Long Paths in Windows 10

	2.3.5. Installation of CTS
	Installation Variance for Windows Cygwin/GCC Toolchains

	2.3.6. Running CTS

	3. Theory of Operation
	3.1. Introduction to Methodology
	3.2. Target Linker Method
	3.3. Host Linker Method
	3.4. Additional Methodology Information
	3.4.1. OSS Testing Methodology
	3.4.2. Java Testing Methodology

	4. Toolchain Configuration File
	4.1. Introduction
	4.2. Toolchain Files List
	4.3. Building a Toolchain Configuration File
	4.3.1. General Tab
	4.3.2. File Extensions Tab
	4.3.3. Tools Tab
	4.3.4. Compiler Specific Tab
	Compiler Specific Functionality
	Configuration

	4.3.5. Notes Tab

	5. Project Configuration File
	5.1. Introduction
	5.2. Project Files List
	5.3. Building a Project Configuration File
	5.3.1. General Tab
	5.3.2. Data Model Tab
	5.3.3. Gold Standard Libraries Tab
	5.3.4. Objects/Libraries Tab
	5.3.5. Notes Tab
	5.3.6. Project Info Tab

	6. Sample Project and Toolchain Configuration Files
	6.1. Build Flags
	6.2. Linux Generation
	6.3. Windows Generation
	6.3.1. Regarding Failing Test Results and Shared Data Model

	7. Testing a UoC
	7.1. Overview
	7.2. Testing a Portable Components Segment (PCS) UoC
	7.2.1. What the User Must Provide
	7.2.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project

	7.3. Testing a Platform Specific Services Segment (PSSS) UoC
	7.3.1. What the User Must Provide
	7.3.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project

	7.4. Testing a Transport Services Segment (TSS) UoC
	7.4.1. What the User Must Provide
	7.4.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project

	7.5. Testing an I/O Services Segment (IOS) UoC
	7.5.1. What the User Must Provide
	7.5.2. Test Procedures
	Providing Project Context
	Generating the Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project

	7.6. Testing an Operating System Segment (OSS) UoC
	7.6.1. What the User Must Provide
	7.6.2. Test Procedures
	Providing Project Context
	Generating Gold Standard Libraries
	Factory Functions
	Validating and Testing a Project

	7.7. Testing a Data Model
	7.7.1. What the User Must Provide
	7.7.2. Test Procedures

	7.8. Considerations for Testing an Ada Segment
	7.9. Considerations for Testing a Java Segment
	7.10. Viewing Test Suite Results

	Appendix A: References
	Appendix B: Using the CTS Via Command Line Interface (CLI):
	Appendix C: Glossary
	Appendix D: Constraints
	Appendix E: Known Issues
	Appendix F: Acknowledgments

